Abstract

The far-ultraviolet reflectance of aluminum films prepared and maintained under ultrahigh-vacuum conditions was measured for wavelengths ranging from 82.6 to 120.0 nm. The degradation of the reflectance after exposure to controlled doses of molecular oxygen was also studied. The degradation rate proved to be higher for wavelengths less than 120 nm than previous measurements made at 121.6 nm.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Lyman, Assessment Study, European Space Agency, SCI (85)4, 1–35 (1985).
  2. R. P. Madden, L. R. Canfield, G. Hass, “On the vacuum-ultraviolet reflectance of evaporated aluminum before and during oxidation,” J. Opt. Soc. Am. 53, 620–625 (1963).
    [CrossRef]
  3. M. R. Adriaens, B. Feuerbacher, “Improved LiF and MgF2 overcoated aluminum mirrors for vacuum ultraviolet astronomy,” Appl. Opt. 10, 958–959 (1971).
    [CrossRef] [PubMed]
  4. A. N. Bunner, “Optical coating in space,” Perkin-Elmer Rep. No. ER-591 (Perkin-Elmer, Norwalk, Conn., 1983).
  5. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975).
  6. W. M. Burton, “High reflectance mirrors for extreme ultraviolet (EUV) space instrumentation,” in Instrumentation in Astronomy, A. Boksenberg, D. L. Crawford, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 445, 340–346 (1983).
  7. J. S. Edmends, C. N. Maldé, S. J. B. Corrigan, “Measurements of the far ultraviolet reflectivity of evaporated aluminum films under exposure to O2, H2O, CO, and CO2,” Vacuum 40, 471–475 (1990).
    [CrossRef]
  8. J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physik Daten Nr. 18-2 (Fachinformationszentrum Energie-Physik-Mathematik GmbH, Karlsruhe, Germany, 1981).
  9. A. Daude, A. Savary, G. Jezequel, S. Robin, “Propriétés optiques de l’aluminium évaporé en ultravide entre 500 et 1400 Å,” C. R. Acad. Sci. Ser. B 269, 901–904 (1969).
  10. B. P. Feuerbacher, W. Steinmann, “Reflectance of evaporated aluminium films in the 1050–1600 Å region, and the influence of the surface plasmon,” Opt. Commun. 1, 81–85 (1969).
    [CrossRef]
  11. A. Daudé, S. Robin, “Appareillage permettant la détermination dans l’ultraviolet lointain des constantes optiques de couches évaporées sous ultra-vide,” Rév. Phys. Appl. 1, 120–122 (1966).
    [CrossRef]

1990 (1)

J. S. Edmends, C. N. Maldé, S. J. B. Corrigan, “Measurements of the far ultraviolet reflectivity of evaporated aluminum films under exposure to O2, H2O, CO, and CO2,” Vacuum 40, 471–475 (1990).
[CrossRef]

1971 (1)

1969 (2)

A. Daude, A. Savary, G. Jezequel, S. Robin, “Propriétés optiques de l’aluminium évaporé en ultravide entre 500 et 1400 Å,” C. R. Acad. Sci. Ser. B 269, 901–904 (1969).

B. P. Feuerbacher, W. Steinmann, “Reflectance of evaporated aluminium films in the 1050–1600 Å region, and the influence of the surface plasmon,” Opt. Commun. 1, 81–85 (1969).
[CrossRef]

1966 (1)

A. Daudé, S. Robin, “Appareillage permettant la détermination dans l’ultraviolet lointain des constantes optiques de couches évaporées sous ultra-vide,” Rév. Phys. Appl. 1, 120–122 (1966).
[CrossRef]

1963 (1)

Adriaens, M. R.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975).

Bunner, A. N.

A. N. Bunner, “Optical coating in space,” Perkin-Elmer Rep. No. ER-591 (Perkin-Elmer, Norwalk, Conn., 1983).

Burton, W. M.

W. M. Burton, “High reflectance mirrors for extreme ultraviolet (EUV) space instrumentation,” in Instrumentation in Astronomy, A. Boksenberg, D. L. Crawford, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 445, 340–346 (1983).

Canfield, L. R.

Corrigan, S. J. B.

J. S. Edmends, C. N. Maldé, S. J. B. Corrigan, “Measurements of the far ultraviolet reflectivity of evaporated aluminum films under exposure to O2, H2O, CO, and CO2,” Vacuum 40, 471–475 (1990).
[CrossRef]

Daude, A.

A. Daude, A. Savary, G. Jezequel, S. Robin, “Propriétés optiques de l’aluminium évaporé en ultravide entre 500 et 1400 Å,” C. R. Acad. Sci. Ser. B 269, 901–904 (1969).

Daudé, A.

A. Daudé, S. Robin, “Appareillage permettant la détermination dans l’ultraviolet lointain des constantes optiques de couches évaporées sous ultra-vide,” Rév. Phys. Appl. 1, 120–122 (1966).
[CrossRef]

Edmends, J. S.

J. S. Edmends, C. N. Maldé, S. J. B. Corrigan, “Measurements of the far ultraviolet reflectivity of evaporated aluminum films under exposure to O2, H2O, CO, and CO2,” Vacuum 40, 471–475 (1990).
[CrossRef]

Feuerbacher, B.

Feuerbacher, B. P.

B. P. Feuerbacher, W. Steinmann, “Reflectance of evaporated aluminium films in the 1050–1600 Å region, and the influence of the surface plasmon,” Opt. Commun. 1, 81–85 (1969).
[CrossRef]

Hass, G.

Jezequel, G.

A. Daude, A. Savary, G. Jezequel, S. Robin, “Propriétés optiques de l’aluminium évaporé en ultravide entre 500 et 1400 Å,” C. R. Acad. Sci. Ser. B 269, 901–904 (1969).

Koch, E. E.

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physik Daten Nr. 18-2 (Fachinformationszentrum Energie-Physik-Mathematik GmbH, Karlsruhe, Germany, 1981).

Krafka, C.

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physik Daten Nr. 18-2 (Fachinformationszentrum Energie-Physik-Mathematik GmbH, Karlsruhe, Germany, 1981).

Lynch, D. W.

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physik Daten Nr. 18-2 (Fachinformationszentrum Energie-Physik-Mathematik GmbH, Karlsruhe, Germany, 1981).

Madden, R. P.

Maldé, C. N.

J. S. Edmends, C. N. Maldé, S. J. B. Corrigan, “Measurements of the far ultraviolet reflectivity of evaporated aluminum films under exposure to O2, H2O, CO, and CO2,” Vacuum 40, 471–475 (1990).
[CrossRef]

Robin, S.

A. Daude, A. Savary, G. Jezequel, S. Robin, “Propriétés optiques de l’aluminium évaporé en ultravide entre 500 et 1400 Å,” C. R. Acad. Sci. Ser. B 269, 901–904 (1969).

A. Daudé, S. Robin, “Appareillage permettant la détermination dans l’ultraviolet lointain des constantes optiques de couches évaporées sous ultra-vide,” Rév. Phys. Appl. 1, 120–122 (1966).
[CrossRef]

Savary, A.

A. Daude, A. Savary, G. Jezequel, S. Robin, “Propriétés optiques de l’aluminium évaporé en ultravide entre 500 et 1400 Å,” C. R. Acad. Sci. Ser. B 269, 901–904 (1969).

Steinmann, W.

B. P. Feuerbacher, W. Steinmann, “Reflectance of evaporated aluminium films in the 1050–1600 Å region, and the influence of the surface plasmon,” Opt. Commun. 1, 81–85 (1969).
[CrossRef]

Weaver, J. H.

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physik Daten Nr. 18-2 (Fachinformationszentrum Energie-Physik-Mathematik GmbH, Karlsruhe, Germany, 1981).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975).

Appl. Opt. (1)

C. R. Acad. Sci. Ser. B (1)

A. Daude, A. Savary, G. Jezequel, S. Robin, “Propriétés optiques de l’aluminium évaporé en ultravide entre 500 et 1400 Å,” C. R. Acad. Sci. Ser. B 269, 901–904 (1969).

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

B. P. Feuerbacher, W. Steinmann, “Reflectance of evaporated aluminium films in the 1050–1600 Å region, and the influence of the surface plasmon,” Opt. Commun. 1, 81–85 (1969).
[CrossRef]

Rév. Phys. Appl. (1)

A. Daudé, S. Robin, “Appareillage permettant la détermination dans l’ultraviolet lointain des constantes optiques de couches évaporées sous ultra-vide,” Rév. Phys. Appl. 1, 120–122 (1966).
[CrossRef]

Vacuum (1)

J. S. Edmends, C. N. Maldé, S. J. B. Corrigan, “Measurements of the far ultraviolet reflectivity of evaporated aluminum films under exposure to O2, H2O, CO, and CO2,” Vacuum 40, 471–475 (1990).
[CrossRef]

Other (5)

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physik Daten Nr. 18-2 (Fachinformationszentrum Energie-Physik-Mathematik GmbH, Karlsruhe, Germany, 1981).

Lyman, Assessment Study, European Space Agency, SCI (85)4, 1–35 (1985).

A. N. Bunner, “Optical coating in space,” Perkin-Elmer Rep. No. ER-591 (Perkin-Elmer, Norwalk, Conn., 1983).

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975).

W. M. Burton, “High reflectance mirrors for extreme ultraviolet (EUV) space instrumentation,” in Instrumentation in Astronomy, A. Boksenberg, D. L. Crawford, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 445, 340–346 (1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of the optical components of the reflectometer: C, capillary; L, lamp; MC, monochromator; G, diffraction grating; ENS, entrance slit; EXS, exit slit; CC, chopper chamber; CB, chopper blade; S, aperture stop; MS, main system; C1, C2, C3, channel electron multipliers; MP, sample manipulator; SH, sample holder; D, driver for C2; P1, P2, P3, small conductance pipes.

Fig. 2
Fig. 2

Fresh and oxidized aluminum film reflectance versus exposure to O2 at different wavelengths: solid curve, 82.6 nm, dashed curves from the longest to the shortest, 86.8, 92.0, 104.8, and 120.0 nm, respectively. Te error bars represent the standard deviation of the averaged reflectances.

Fig. 3
Fig. 3

Aluminum film reflectance versus wavelength for different exposures to O2: ○, fresh aluminum; aluminum eposed to □, 4 L; △, 15 L; ◇, 60 L; ×, 240 L; ▲, 960 L; ■, 15,000 L. Solid curve, aluminum reflectance calculated with published optical constants8 at 10°. Long dashed curve, aluminum reflectances measured by Daude et al.9 Short dashed curve, aluminum reflectances measured by Feuerbacher and Steinmann.10

Fig. 4
Fig. 4

Solid curve, current aluminum reflectance versus exposure to O2 measurements at 120.0 nm. Dashed curves from the longest to the shortest, aluminum reflectance measurements at 121.6 nm of Edmends et al.,7 Feuerbacher and Steinmann,10 Daudé and Robin,11 and Madden et al.2

Tables (1)

Tables Icon

Table1 Aluminum Reflectance at Different Exposures to O2 and the Relative Decay with Respect to Fresh Aluminum Reflectance(in Percent)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

p tot = 4 × 10 - 10 mbars ,             p 18 = 2 × 10 - 11 mbars ,             p 32 < 10 - 11 mbars , p 28 = 5 × 10 - 11 mbars ,             p 44 = 4 × 10 - 11 mbars ,
p tot = 10 - 8 mbars ,             p 18 = 6 × 10 - 11 mbars ,             p 32 < 10 - 11 mbars , p 28 = 6 × 10 - 11 mbars ,             p 44 = 5 × 10 - 11 mbars ,             p 4 = 6 × 10 - 8 mbars .
r θ ( i ) π ( j ) r θ ( 6 ) π ( j ) = I θ ( i ) π ( j ) I θ ( 6 ) π ( j ) .
p = I p - I s I p + I s ,
F = R ( 78 ° , n , k , p ) / r 78 ° .
I inc = F I inc .

Metrics