Abstract

Fabrication of very-narrow-bandpass optical tunable filters [(0.3 nm full width at half-maximum) (FWHM)] is reported. To improve the film densities, the O2 ion-assisted deposition-method is used in the fabrication. In the succession of high- and low-refractive-index layers, the commonly used TiO2 material is replaced The relative thicknesses of the by Ta2O5, which suits the ion-assisted fabrication technique. filter multilayer structure of 1/2/1 are modified to 0.998/2.007/0.998, which reduces the shift difference in the central wavelengths with regard to the p and s polarizations when the filter is tilted. These improvements enabled fabrication of 0.3-nm-FWHM optical tunable filters with improved stability characteristics.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Saito, T. Imai, T. Ito, “An over 2200-km coherent transmission experiment at 2.5 Gb/s using erbium-doped-fiber in-line amplifiers,” IEEE J. Lightwave Technol. 9, 161–169 (1991).
    [CrossRef]
  2. Y. Fujii, “Wavelength demultiplexer that uses an interference filter and achromatic quarter-wave plates,” Opt. Lett. 16, 345–347 (1991).
    [CrossRef] [PubMed]
  3. J. Minowa, Y. Fujii, “Subnanometer bandwidth interference filter for optical fiber communication systems,” Appl. Opt. 27, 1385–1386 (1988).
    [CrossRef] [PubMed]
  4. M. W. Maeda, J. S. Patel, C. Lin, R. Spicer, J. Horrobin, “Electronically tunable liquid-crystal-étalon filter for high-density WDM systems,” IEEE Photon. Technol. Lett. 2, 820–822 (1990).
    [CrossRef]
  5. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990).
    [CrossRef]
  6. H. Ishio, J. Minowa, K. Nosu, “Review and status of wavelength-division-multiplexing technology and its application,” IEEE J. Lightwave Technol. LT-2, 448–463 (1984).
    [CrossRef]
  7. K. Hirabayashi, Y. Oiso, T. Kurokawa, “Polarization-independent tunable wavelength selective filter using a liquid crystal,” IEEE Photon. Technol. Lett. 3, 1091–1093 (1991).
    [CrossRef]
  8. H. Toba, K. Oda, N. Takato, K. Nosu, “5GHz-spaced eight-channel guided wave tunable multi/demultiplexer for optical fdm transmission system,” Electron. Lett. 23, 788–789 (1987).
    [CrossRef]
  9. W. G. Driscoll, ed., Handbook of Optics (McGraw-Hill, New York, 1978), pp. 8–87.
  10. P. J. Martin, H. A. Macleod, R. P. Netterfield, C. G. Pacey, W. G. Sainty, “Ion-beam-assisted deposition of thin films,” Appl. Opt. 22, 178–184 (1983).
    [CrossRef] [PubMed]
  11. J. Edlinger, J. Ramm, H. K. Pulker, “Stability of the spectral characteristics of ion plated interference filters,” in Thin Film Technology III, K. H. Guenther, H. K. Pulker, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1019, 179–183 (1988).
  12. P. J. Martin, “Review of ion-based methods of optical thin film deposition,” J. Mater. Sci. 21, 1–25 (1986).
    [CrossRef]
  13. H. A. Macleod, Thin-Film Optical Filters (Hilger, Bristol, UK, 1969), p. 265.

1991 (3)

S. Saito, T. Imai, T. Ito, “An over 2200-km coherent transmission experiment at 2.5 Gb/s using erbium-doped-fiber in-line amplifiers,” IEEE J. Lightwave Technol. 9, 161–169 (1991).
[CrossRef]

Y. Fujii, “Wavelength demultiplexer that uses an interference filter and achromatic quarter-wave plates,” Opt. Lett. 16, 345–347 (1991).
[CrossRef] [PubMed]

K. Hirabayashi, Y. Oiso, T. Kurokawa, “Polarization-independent tunable wavelength selective filter using a liquid crystal,” IEEE Photon. Technol. Lett. 3, 1091–1093 (1991).
[CrossRef]

1990 (2)

M. W. Maeda, J. S. Patel, C. Lin, R. Spicer, J. Horrobin, “Electronically tunable liquid-crystal-étalon filter for high-density WDM systems,” IEEE Photon. Technol. Lett. 2, 820–822 (1990).
[CrossRef]

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990).
[CrossRef]

1988 (1)

1987 (1)

H. Toba, K. Oda, N. Takato, K. Nosu, “5GHz-spaced eight-channel guided wave tunable multi/demultiplexer for optical fdm transmission system,” Electron. Lett. 23, 788–789 (1987).
[CrossRef]

1986 (1)

P. J. Martin, “Review of ion-based methods of optical thin film deposition,” J. Mater. Sci. 21, 1–25 (1986).
[CrossRef]

1984 (1)

H. Ishio, J. Minowa, K. Nosu, “Review and status of wavelength-division-multiplexing technology and its application,” IEEE J. Lightwave Technol. LT-2, 448–463 (1984).
[CrossRef]

1983 (1)

Edlinger, J.

J. Edlinger, J. Ramm, H. K. Pulker, “Stability of the spectral characteristics of ion plated interference filters,” in Thin Film Technology III, K. H. Guenther, H. K. Pulker, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1019, 179–183 (1988).

Fujii, Y.

Hirabayashi, K.

K. Hirabayashi, Y. Oiso, T. Kurokawa, “Polarization-independent tunable wavelength selective filter using a liquid crystal,” IEEE Photon. Technol. Lett. 3, 1091–1093 (1991).
[CrossRef]

Horrobin, J.

M. W. Maeda, J. S. Patel, C. Lin, R. Spicer, J. Horrobin, “Electronically tunable liquid-crystal-étalon filter for high-density WDM systems,” IEEE Photon. Technol. Lett. 2, 820–822 (1990).
[CrossRef]

Imai, T.

S. Saito, T. Imai, T. Ito, “An over 2200-km coherent transmission experiment at 2.5 Gb/s using erbium-doped-fiber in-line amplifiers,” IEEE J. Lightwave Technol. 9, 161–169 (1991).
[CrossRef]

Ishio, H.

H. Ishio, J. Minowa, K. Nosu, “Review and status of wavelength-division-multiplexing technology and its application,” IEEE J. Lightwave Technol. LT-2, 448–463 (1984).
[CrossRef]

Ito, T.

S. Saito, T. Imai, T. Ito, “An over 2200-km coherent transmission experiment at 2.5 Gb/s using erbium-doped-fiber in-line amplifiers,” IEEE J. Lightwave Technol. 9, 161–169 (1991).
[CrossRef]

Kawachi, M.

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990).
[CrossRef]

Kurokawa, T.

K. Hirabayashi, Y. Oiso, T. Kurokawa, “Polarization-independent tunable wavelength selective filter using a liquid crystal,” IEEE Photon. Technol. Lett. 3, 1091–1093 (1991).
[CrossRef]

Lin, C.

M. W. Maeda, J. S. Patel, C. Lin, R. Spicer, J. Horrobin, “Electronically tunable liquid-crystal-étalon filter for high-density WDM systems,” IEEE Photon. Technol. Lett. 2, 820–822 (1990).
[CrossRef]

Macleod, H. A.

Maeda, M. W.

M. W. Maeda, J. S. Patel, C. Lin, R. Spicer, J. Horrobin, “Electronically tunable liquid-crystal-étalon filter for high-density WDM systems,” IEEE Photon. Technol. Lett. 2, 820–822 (1990).
[CrossRef]

Martin, P. J.

Minowa, J.

J. Minowa, Y. Fujii, “Subnanometer bandwidth interference filter for optical fiber communication systems,” Appl. Opt. 27, 1385–1386 (1988).
[CrossRef] [PubMed]

H. Ishio, J. Minowa, K. Nosu, “Review and status of wavelength-division-multiplexing technology and its application,” IEEE J. Lightwave Technol. LT-2, 448–463 (1984).
[CrossRef]

Netterfield, R. P.

Nosu, K.

H. Toba, K. Oda, N. Takato, K. Nosu, “5GHz-spaced eight-channel guided wave tunable multi/demultiplexer for optical fdm transmission system,” Electron. Lett. 23, 788–789 (1987).
[CrossRef]

H. Ishio, J. Minowa, K. Nosu, “Review and status of wavelength-division-multiplexing technology and its application,” IEEE J. Lightwave Technol. LT-2, 448–463 (1984).
[CrossRef]

Oda, K.

H. Toba, K. Oda, N. Takato, K. Nosu, “5GHz-spaced eight-channel guided wave tunable multi/demultiplexer for optical fdm transmission system,” Electron. Lett. 23, 788–789 (1987).
[CrossRef]

Oiso, Y.

K. Hirabayashi, Y. Oiso, T. Kurokawa, “Polarization-independent tunable wavelength selective filter using a liquid crystal,” IEEE Photon. Technol. Lett. 3, 1091–1093 (1991).
[CrossRef]

Pacey, C. G.

Patel, J. S.

M. W. Maeda, J. S. Patel, C. Lin, R. Spicer, J. Horrobin, “Electronically tunable liquid-crystal-étalon filter for high-density WDM systems,” IEEE Photon. Technol. Lett. 2, 820–822 (1990).
[CrossRef]

Pulker, H. K.

J. Edlinger, J. Ramm, H. K. Pulker, “Stability of the spectral characteristics of ion plated interference filters,” in Thin Film Technology III, K. H. Guenther, H. K. Pulker, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1019, 179–183 (1988).

Ramm, J.

J. Edlinger, J. Ramm, H. K. Pulker, “Stability of the spectral characteristics of ion plated interference filters,” in Thin Film Technology III, K. H. Guenther, H. K. Pulker, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1019, 179–183 (1988).

Sainty, W. G.

Saito, S.

S. Saito, T. Imai, T. Ito, “An over 2200-km coherent transmission experiment at 2.5 Gb/s using erbium-doped-fiber in-line amplifiers,” IEEE J. Lightwave Technol. 9, 161–169 (1991).
[CrossRef]

Spicer, R.

M. W. Maeda, J. S. Patel, C. Lin, R. Spicer, J. Horrobin, “Electronically tunable liquid-crystal-étalon filter for high-density WDM systems,” IEEE Photon. Technol. Lett. 2, 820–822 (1990).
[CrossRef]

Takato, N.

H. Toba, K. Oda, N. Takato, K. Nosu, “5GHz-spaced eight-channel guided wave tunable multi/demultiplexer for optical fdm transmission system,” Electron. Lett. 23, 788–789 (1987).
[CrossRef]

Toba, H.

H. Toba, K. Oda, N. Takato, K. Nosu, “5GHz-spaced eight-channel guided wave tunable multi/demultiplexer for optical fdm transmission system,” Electron. Lett. 23, 788–789 (1987).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

H. Toba, K. Oda, N. Takato, K. Nosu, “5GHz-spaced eight-channel guided wave tunable multi/demultiplexer for optical fdm transmission system,” Electron. Lett. 23, 788–789 (1987).
[CrossRef]

IEEE J. Lightwave Technol. (2)

H. Ishio, J. Minowa, K. Nosu, “Review and status of wavelength-division-multiplexing technology and its application,” IEEE J. Lightwave Technol. LT-2, 448–463 (1984).
[CrossRef]

S. Saito, T. Imai, T. Ito, “An over 2200-km coherent transmission experiment at 2.5 Gb/s using erbium-doped-fiber in-line amplifiers,” IEEE J. Lightwave Technol. 9, 161–169 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. W. Maeda, J. S. Patel, C. Lin, R. Spicer, J. Horrobin, “Electronically tunable liquid-crystal-étalon filter for high-density WDM systems,” IEEE Photon. Technol. Lett. 2, 820–822 (1990).
[CrossRef]

K. Hirabayashi, Y. Oiso, T. Kurokawa, “Polarization-independent tunable wavelength selective filter using a liquid crystal,” IEEE Photon. Technol. Lett. 3, 1091–1093 (1991).
[CrossRef]

J. Mater. Sci. (1)

P. J. Martin, “Review of ion-based methods of optical thin film deposition,” J. Mater. Sci. 21, 1–25 (1986).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990).
[CrossRef]

Other (3)

W. G. Driscoll, ed., Handbook of Optics (McGraw-Hill, New York, 1978), pp. 8–87.

H. A. Macleod, Thin-Film Optical Filters (Hilger, Bristol, UK, 1969), p. 265.

J. Edlinger, J. Ramm, H. K. Pulker, “Stability of the spectral characteristics of ion plated interference filters,” in Thin Film Technology III, K. H. Guenther, H. K. Pulker, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1019, 179–183 (1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Transmission power versus the wavelength shift for different FWHM filters.

Fig. 2
Fig. 2

Central-wavelength shift versus the filter tilt angle.

Fig. 3
Fig. 3

Difference between the wavelength shift of p- and s-polarization states versus the tilt angles for different thicknesses in the mirror-to-cavity layer.

Fig. 4
Fig. 4

Schematic diagram of the filter-fabrication process.

Fig. 5
Fig. 5

Spectral characteristics of the filter at normal incidence.

Fig. 6
Fig. 6

Spectral characteristics of the filter at a tilt angle of 20 deg: a, spectrum corresponding to the p-polarization state; b, spectrum corresponding to a general polarization state; c, spectrum corresponding to the s-polarization state. In the case of the general polarization state, the central wavelength is 1533.3 nm with a transmission loss of −2.6 dB.

Fig. 7
Fig. 7

Environmental stabilities: (a) central-wavelength shifts versus humidity variations in the 40–90% range at 30 °C. (b) Humidity variations versus time.

Fig. 8
Fig. 8

Environmental stabilities: (a) central wavelength versus temperature variations in the range of −10 to +80 °C, (b) central wavelength shifts versus time, at room temperature.

Tables (1)

Tables Icon

Table 1 Parameters of the Ion-Assisted Evaporation Process

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

HLHL HL 18 H ( 2 L ) H LHLH LH 18 .
( HL ) 9 H ( 2 L ) H ( LH ) 9 ,

Metrics