Abstract

An optical backplane design based on gradient-index lenses is described. This design is based on a tapped bus architecture and offers an affordable and efficient card-to-card communication method. It was found that the use of gradient-index lenses reduced the alignment tolerances by a factor of 10 over an equivalent free-space model. Results from simulation and from the construction of a five-node, proof-of-concept demonstration unit are presented. The excess loss measured for the 25 different combinations varied from a low of 0.7 dB to a high of 4.0 dB.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Z. Tsang, “Optical interconnections in digital systems—status and prospects,” Opt. Photon. News23–29 (Oct.1990).
    [CrossRef]
  2. L. H. Gipson, W. P. Batina, “Electrical circuit and optical data buss,” U.S. patent4, 732, 446 (22March1988).
  3. Many applicable articles appear in Appl. Opt. 29, 1067–1161 (1990).
    [PubMed]
  4. J. D. Crow, “Fiber-optic modules for high speed computer networks,” in Proceedings of the 39th Conference on Electronic Components (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 355–358.
    [CrossRef]
  5. C. T. Sullivan, “Optical waveguide circuits for printed wire-board interconnections,” in Optoelectronic Materials, Devices, Packaging, and Interconnects II, G. M. McWright, H. J. Wojtunik, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 994, 92–100 (1988).
  6. L. A. Hornak, “Optical interconnection routing studies using alkyl silicon polymers,” in Optical Interconnects in the Computer Environment, J. Pazaris, G. R. Willenbring, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1178, 146–154 (1989).
  7. D. H. Hartman, G. R. Lalk, J. W. Howse, R. R. Krchnavek, “Radiant cured polymer optical waveguides on printed circuit boards for photonic interconnection use,” Appl. Opt. 28, 40–47 (1989).
    [CrossRef] [PubMed]
  8. J. M. Hagerhorst-Trewhella, J. D. Gelorme, B. Fan, A. Speth, D. Flagello, M. M. Oprysko, “Polymeric optical waveguides,” in Integrated Optics and Optoelectronics, L. Mc-Caughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1177, 379–386 (1989).
  9. D. Z. Tsang, “One-gigabit-per-second free-space optical interconnection,” Appl. Opt. 29, 2034–2037 (1990).
    [CrossRef] [PubMed]
  10. F. Lin, “Highly parallel single-mode multiplanar holographic interconnects,” Opt. Lett. 16, 183–185 (1991).
    [PubMed]
  11. H.-D. Wu, F. S. Barnes, eds., Microlenses—Coupling Light to Optical Fibers (Institute of Electrical and Electronics Engineers, New York, 1991).

1991

1990

1989

Batina, W. P.

L. H. Gipson, W. P. Batina, “Electrical circuit and optical data buss,” U.S. patent4, 732, 446 (22March1988).

Crow, J. D.

J. D. Crow, “Fiber-optic modules for high speed computer networks,” in Proceedings of the 39th Conference on Electronic Components (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 355–358.
[CrossRef]

Fan, B.

J. M. Hagerhorst-Trewhella, J. D. Gelorme, B. Fan, A. Speth, D. Flagello, M. M. Oprysko, “Polymeric optical waveguides,” in Integrated Optics and Optoelectronics, L. Mc-Caughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1177, 379–386 (1989).

Flagello, D.

J. M. Hagerhorst-Trewhella, J. D. Gelorme, B. Fan, A. Speth, D. Flagello, M. M. Oprysko, “Polymeric optical waveguides,” in Integrated Optics and Optoelectronics, L. Mc-Caughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1177, 379–386 (1989).

Gelorme, J. D.

J. M. Hagerhorst-Trewhella, J. D. Gelorme, B. Fan, A. Speth, D. Flagello, M. M. Oprysko, “Polymeric optical waveguides,” in Integrated Optics and Optoelectronics, L. Mc-Caughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1177, 379–386 (1989).

Gipson, L. H.

L. H. Gipson, W. P. Batina, “Electrical circuit and optical data buss,” U.S. patent4, 732, 446 (22March1988).

Hagerhorst-Trewhella, J. M.

J. M. Hagerhorst-Trewhella, J. D. Gelorme, B. Fan, A. Speth, D. Flagello, M. M. Oprysko, “Polymeric optical waveguides,” in Integrated Optics and Optoelectronics, L. Mc-Caughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1177, 379–386 (1989).

Hartman, D. H.

Hornak, L. A.

L. A. Hornak, “Optical interconnection routing studies using alkyl silicon polymers,” in Optical Interconnects in the Computer Environment, J. Pazaris, G. R. Willenbring, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1178, 146–154 (1989).

Howse, J. W.

Krchnavek, R. R.

Lalk, G. R.

Lin, F.

Oprysko, M. M.

J. M. Hagerhorst-Trewhella, J. D. Gelorme, B. Fan, A. Speth, D. Flagello, M. M. Oprysko, “Polymeric optical waveguides,” in Integrated Optics and Optoelectronics, L. Mc-Caughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1177, 379–386 (1989).

Speth, A.

J. M. Hagerhorst-Trewhella, J. D. Gelorme, B. Fan, A. Speth, D. Flagello, M. M. Oprysko, “Polymeric optical waveguides,” in Integrated Optics and Optoelectronics, L. Mc-Caughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1177, 379–386 (1989).

Sullivan, C. T.

C. T. Sullivan, “Optical waveguide circuits for printed wire-board interconnections,” in Optoelectronic Materials, Devices, Packaging, and Interconnects II, G. M. McWright, H. J. Wojtunik, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 994, 92–100 (1988).

Tsang, D. Z.

D. Z. Tsang, “One-gigabit-per-second free-space optical interconnection,” Appl. Opt. 29, 2034–2037 (1990).
[CrossRef] [PubMed]

D. Z. Tsang, “Optical interconnections in digital systems—status and prospects,” Opt. Photon. News23–29 (Oct.1990).
[CrossRef]

Appl. Opt.

Opt. Lett.

Opt. Photon. News

D. Z. Tsang, “Optical interconnections in digital systems—status and prospects,” Opt. Photon. News23–29 (Oct.1990).
[CrossRef]

Other

L. H. Gipson, W. P. Batina, “Electrical circuit and optical data buss,” U.S. patent4, 732, 446 (22March1988).

J. M. Hagerhorst-Trewhella, J. D. Gelorme, B. Fan, A. Speth, D. Flagello, M. M. Oprysko, “Polymeric optical waveguides,” in Integrated Optics and Optoelectronics, L. Mc-Caughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1177, 379–386 (1989).

J. D. Crow, “Fiber-optic modules for high speed computer networks,” in Proceedings of the 39th Conference on Electronic Components (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 355–358.
[CrossRef]

C. T. Sullivan, “Optical waveguide circuits for printed wire-board interconnections,” in Optoelectronic Materials, Devices, Packaging, and Interconnects II, G. M. McWright, H. J. Wojtunik, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 994, 92–100 (1988).

L. A. Hornak, “Optical interconnection routing studies using alkyl silicon polymers,” in Optical Interconnects in the Computer Environment, J. Pazaris, G. R. Willenbring, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1178, 146–154 (1989).

H.-D. Wu, F. S. Barnes, eds., Microlenses—Coupling Light to Optical Fibers (Institute of Electrical and Electronics Engineers, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

GRIN rod lens optical backplane design. Tx, transmitter; Rec, receiver.

Fig. 2
Fig. 2

Proof-of-concept model optical backplane.

Fig. 3
Fig. 3

Results from the SuperOslo optical design software on the backplane without GRIN lenses. The spot diagram illustrates 80 different ray paths through the optical system. The radial energy distribution is the integrated energy from the center of the spot diagram. All dimensions are in millimeters. LD, laser diode.

Fig. 4
Fig. 4

Results from the SuperOslo optical design software on the backplane with GRIN lenses. The spot diagram illustrates 80 different ray paths through the optical system. The radial energy distribution is the integrated energy from the center of the spot diagram. All dimensions are in millimeters. LD, laser diode.

Fig. 5
Fig. 5

Optical backplane utilizing the tapped bus architecture.

Fig. 6
Fig. 6

Optimized beam-splitter reflectivity and the receiver dynamic range for GRIN lens optical backplane systems.

Fig. 7
Fig. 7

GRIN rod lens optical backplane design with a double redundancy repeater. Tx, transmitter; Rec, receiver.

Fig. 8
Fig. 8

Power budgets for several different optical backplane designs from transmitter fiber output to receiver fiber input.

Fig. 9
Fig. 9

Optical power loss from transmitter fiber to receiver fiber for a GRIN rod lens design with and without a repeater versus beam-splitter absorption (percent).

Fig. 10
Fig. 10

Loss caused by divergence for a 1- and 2-mm receiver lens. The transmitter fiber is single mode with a 2-mm collimating GRIN lens. Tx, transmitter; Rec, receiver.

Fig. 11
Fig. 11

Alignment tolerances for GRIN line optical backplane design. Received optical power versus beam-splitter and prism movements.

Fig. 12
Fig. 12

Coupling loss for the proof-of-concept optical backplane.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P t N = a R ( 1 - R - A ) N - 1 P 0 .
P r N = a R 2 ( 1 - R - A ) N - 1 P 0 .
P r 2 = P t N ( 1 - R - A ) N - 2 R
P r 2 = a R 2 ( 1 - R - A ) 2 N - 3 P 0 .
P r N = P N R 2 = a P 0 R 2 .
dyn . range = 10 log ( P r N / P r 2 ) = 10 [ ( 2 N - 3 ) log ( 1 - R - A ) ] .
R opt = 2 ( 1 - A ) / ( 2 N - 1 ) .

Metrics