Abstract

The Mars Observer Laser Altimeter utilizes a space-qualified diode-laser-pumped Q-switched Nd:YAG laser transmitter. A simple numerical model of the laser energetics is presented, which predicts the pulse energy and pulse width. Comparisons with the measured data available are made. The temperature dependence of the laser transmitter is also predicted. This dependence prediction is particularly important in determining the operational temperature range of the transmitter. Knowing the operational temperature range is especially important for a passive, thermally controlled laser operating in space.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. T. Zuber, D. E. Smith, S. C. Solomon, D. O. Muhlman, J. W. Head, J. B. Garvin, J. B. Abshire, J. L. Bufton, “The Mars Observer Laser Altimeter investigation,” J. Geophys. Res. 97, 7781–7797 (1992).
    [CrossRef]
  2. The instrument had to withstand radiation dosages of over 100 krad: “Procurement Specifications for the MOLA Laser Transmitter,” Rep. DWG 91D020001-1001 (McDonnell-Douglas Astronautics Company, St. Louis Division, St. Louis, Mo., 1989), p. 53.
  3. G. Gaither, “Design of the Mars Observer Laser Altimeter laser transmitter,” in Conference on Lasers and Electro-Optics, Vol. 10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CF12, p. 520.
  4. There are a number of treatments of crossed-Porro resonators in the literature. One example is M. Acherakar, “Derivation of internal incidence angles and coordinate transformations between internal reflections for corner reflectors at normal incidence,” Opt. Eng. 23, 669–674 (1984).
  5. J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
    [CrossRef]
  6. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1976), Chap. 8, p. 435.
  7. E. B. Treacy, Z. Lu, “Negative Lens Laser,” in Small Business Inovative Research Phase I Final Report 1991, U.S. Office of Naval Research Rep. on contract N-00014-90-C-0187 (U.S. Government Printing Office, Washington, D.C., 1991, p. 11.
  8. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 26, p. 1004.
  9. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B 3, 102–113 (1986).
    [CrossRef]
  10. L. A. Riseberg, H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174, 429–438 (1968); W. M. Yen, W. C. Scott, A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev. 136, A271–A283 (1964).
    [CrossRef]

1992

M. T. Zuber, D. E. Smith, S. C. Solomon, D. O. Muhlman, J. W. Head, J. B. Garvin, J. B. Abshire, J. L. Bufton, “The Mars Observer Laser Altimeter investigation,” J. Geophys. Res. 97, 7781–7797 (1992).
[CrossRef]

1989

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

1986

1984

There are a number of treatments of crossed-Porro resonators in the literature. One example is M. Acherakar, “Derivation of internal incidence angles and coordinate transformations between internal reflections for corner reflectors at normal incidence,” Opt. Eng. 23, 669–674 (1984).

1968

L. A. Riseberg, H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174, 429–438 (1968); W. M. Yen, W. C. Scott, A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev. 136, A271–A283 (1964).
[CrossRef]

Abshire, J. B.

M. T. Zuber, D. E. Smith, S. C. Solomon, D. O. Muhlman, J. W. Head, J. B. Garvin, J. B. Abshire, J. L. Bufton, “The Mars Observer Laser Altimeter investigation,” J. Geophys. Res. 97, 7781–7797 (1992).
[CrossRef]

Bufton, J. L.

M. T. Zuber, D. E. Smith, S. C. Solomon, D. O. Muhlman, J. W. Head, J. B. Garvin, J. B. Abshire, J. L. Bufton, “The Mars Observer Laser Altimeter investigation,” J. Geophys. Res. 97, 7781–7797 (1992).
[CrossRef]

Caird, J. A.

Degnan, J. J.

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

Gaither, G.

G. Gaither, “Design of the Mars Observer Laser Altimeter laser transmitter,” in Conference on Lasers and Electro-Optics, Vol. 10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CF12, p. 520.

Garvin, J. B.

M. T. Zuber, D. E. Smith, S. C. Solomon, D. O. Muhlman, J. W. Head, J. B. Garvin, J. B. Abshire, J. L. Bufton, “The Mars Observer Laser Altimeter investigation,” J. Geophys. Res. 97, 7781–7797 (1992).
[CrossRef]

Head, J. W.

M. T. Zuber, D. E. Smith, S. C. Solomon, D. O. Muhlman, J. W. Head, J. B. Garvin, J. B. Abshire, J. L. Bufton, “The Mars Observer Laser Altimeter investigation,” J. Geophys. Res. 97, 7781–7797 (1992).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1976), Chap. 8, p. 435.

Krupke, W. F.

Lu, Z.

E. B. Treacy, Z. Lu, “Negative Lens Laser,” in Small Business Inovative Research Phase I Final Report 1991, U.S. Office of Naval Research Rep. on contract N-00014-90-C-0187 (U.S. Government Printing Office, Washington, D.C., 1991, p. 11.

Marion, J. E.

Moos, H. W.

L. A. Riseberg, H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174, 429–438 (1968); W. M. Yen, W. C. Scott, A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev. 136, A271–A283 (1964).
[CrossRef]

Muhlman, D. O.

M. T. Zuber, D. E. Smith, S. C. Solomon, D. O. Muhlman, J. W. Head, J. B. Garvin, J. B. Abshire, J. L. Bufton, “The Mars Observer Laser Altimeter investigation,” J. Geophys. Res. 97, 7781–7797 (1992).
[CrossRef]

Riseberg, L. A.

L. A. Riseberg, H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174, 429–438 (1968); W. M. Yen, W. C. Scott, A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev. 136, A271–A283 (1964).
[CrossRef]

Shinn, M. D.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 26, p. 1004.

Smith, D. E.

M. T. Zuber, D. E. Smith, S. C. Solomon, D. O. Muhlman, J. W. Head, J. B. Garvin, J. B. Abshire, J. L. Bufton, “The Mars Observer Laser Altimeter investigation,” J. Geophys. Res. 97, 7781–7797 (1992).
[CrossRef]

Solomon, S. C.

M. T. Zuber, D. E. Smith, S. C. Solomon, D. O. Muhlman, J. W. Head, J. B. Garvin, J. B. Abshire, J. L. Bufton, “The Mars Observer Laser Altimeter investigation,” J. Geophys. Res. 97, 7781–7797 (1992).
[CrossRef]

Stokowski, S. E.

Treacy, E. B.

E. B. Treacy, Z. Lu, “Negative Lens Laser,” in Small Business Inovative Research Phase I Final Report 1991, U.S. Office of Naval Research Rep. on contract N-00014-90-C-0187 (U.S. Government Printing Office, Washington, D.C., 1991, p. 11.

Zuber, M. T.

M. T. Zuber, D. E. Smith, S. C. Solomon, D. O. Muhlman, J. W. Head, J. B. Garvin, J. B. Abshire, J. L. Bufton, “The Mars Observer Laser Altimeter investigation,” J. Geophys. Res. 97, 7781–7797 (1992).
[CrossRef]

IEEE J. Quantum Electron.

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

J. Geophys. Res.

M. T. Zuber, D. E. Smith, S. C. Solomon, D. O. Muhlman, J. W. Head, J. B. Garvin, J. B. Abshire, J. L. Bufton, “The Mars Observer Laser Altimeter investigation,” J. Geophys. Res. 97, 7781–7797 (1992).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Eng.

There are a number of treatments of crossed-Porro resonators in the literature. One example is M. Acherakar, “Derivation of internal incidence angles and coordinate transformations between internal reflections for corner reflectors at normal incidence,” Opt. Eng. 23, 669–674 (1984).

Phys. Rev.

L. A. Riseberg, H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174, 429–438 (1968); W. M. Yen, W. C. Scott, A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev. 136, A271–A283 (1964).
[CrossRef]

Other

The instrument had to withstand radiation dosages of over 100 krad: “Procurement Specifications for the MOLA Laser Transmitter,” Rep. DWG 91D020001-1001 (McDonnell-Douglas Astronautics Company, St. Louis Division, St. Louis, Mo., 1989), p. 53.

G. Gaither, “Design of the Mars Observer Laser Altimeter laser transmitter,” in Conference on Lasers and Electro-Optics, Vol. 10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CF12, p. 520.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1976), Chap. 8, p. 435.

E. B. Treacy, Z. Lu, “Negative Lens Laser,” in Small Business Inovative Research Phase I Final Report 1991, U.S. Office of Naval Research Rep. on contract N-00014-90-C-0187 (U.S. Government Printing Office, Washington, D.C., 1991, p. 11.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 26, p. 1004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the MOLA laser: The numbers indicate 1 the Porro prism, 2 the Risley wedge, 3 the 1/4λ plate, 4 the Cr:Nd:YAG slab, 5 the stacks of diode lasers, 6 the polarizers, 7 the lithium niobate Q switch, and 8 the 0.57λ plate.

Fig. 2
Fig. 2

Numerical model predictions of the output energy (solid curve) and the FWHM pulse width (dashed curve) against the effective output coupler reflectivity.

Fig. 3
Fig. 3

Comparison of the model and measured values for the LT: (a) Numerical simulation of the laser output pulse. Photon density is shown by the solid curve and the gain medium inversion density is the dashed curve. This case predicts a laser pulse of 46 mJ, 7.2 ns FWHM with R = 0.4 output coupling and the diodes at 15 °C. (b) Oscilloscope trace of the MOLA laser pulse of 44 mJ and FWHM = 7.6 ns. The trailing-edge bumps on the pulse possibly result from detector ringing. A simple mean-field model for a Q-switched laser such as the one presented here is incapable of predicting such dynamics.

Fig. 4
Fig. 4

Graph of the Nd:YAG absorption spectrum at nearly 0.8 μm and a representation of the number of diode bars (Vertical columns) at each corresponding wavelength. The relative positions of the bars and the Nd:YAG absorption is temperature dependent.

Fig. 5
Fig. 5

Graph of the calculated percentage of the total light emitted by the diodes and absorbed by the slab as a function of temperature.

Fig. 6
Fig. 6

Graph showing the measured pulse energy (circles) and the measured pulse width (triangles) as a function of temperature. The curves are the model predictions for the pulse energy and pulse width overlaid with the experimental data points.

Fig. 7
Fig. 7

Representation of the two-way circulating energy inside the MOLA laser cavity. Using the schematic of the resonator shown in Fig. 1, one can estimate the intracavity energy by tracing a vertical line from the element of interest (top) to the energy schematic (bottom). Shown in the figure is a Q-switch face through the intersection of the two-way circulating-energy curves. The total energy incident on that surface is the sum of the forward and backward values as read by the right-hand scale.

Tables (1)

Tables Icon

Table 1 Specifications for the Mars Observer Laser Altimeter

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d N d t = γσ c N ϕ ,
d ϕ d t = 2 σ l N ϕ t r ϕ t c ,
N 0 = P t p αξχη V h ν ,
η = [ 1 exp ( t p / t spon ) ] t spon / t p ,
L = 2 α l + ln ( 1 / i T i 2 ) = 0 . 35 ,
L ( t ) = L [ 1 + exp ( t / τ ) ] ,

Metrics