Abstract

Spatial beam apodization is a critical part of the design of high-energy solid-state laser systems. Standard methods of making apodizers include photographic and metal-vapor-deposition techniques. Apodizers fabricated with these methods are subject to damage and deterioration from high-intensity laser pulses. An alternative approach is to use a serrated-edge aperture in conjunction with the spatial filter. This system can produce beams with smooth edge profiles. We present the theory of operation of the serrated aperture along with some useful design rules and describe the successful application of a serrated-aperture apodizer in the Beamlet laser system.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. W. Simmons, R. O. Godwin, “Nova laser fusion facility: design, engineering, and assembly overview,” Nucl. Tech. Fusion 4, 8–24 (1983).
  2. E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, “Propagation of a high-intensity laser pulse with small-scale intensity modulation,” Appl. Phys. Lett. 25, 448–450 (1974).
    [CrossRef]
  3. J. A. Fleck, J. R. Morris, E.-S. Bliss, “Small-scale self-focusing effects in a high-power glass laser amplifier,” IEEE J. Quantum Electron. QE-14, 353–363 (1978).
    [CrossRef]
  4. J. T. Hunt, P. A. Renard, W. W. Simmons, “Improved performance of fusion lasers using the imaging properties of multiple spatial filters,” Appl. Opt. 16, 779–782 (1977).
    [PubMed]
  5. J. B. Trenholme, Laser Program, Lawrence Livermore National Laboratory, P.O. Box 5508, Livermore, Calif. 94550 (personal communication, 1March1978).
  6. R. N. Bracwell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, New York, 1986), Chap. 8, p. 103.
  7. B. M. Van Wonterghem, D. R. Speck, M. Norman, R. B. Wilcox, V. P. Karpenko, J. B. Richards, “A Compact and Versatile Pulse-Generation and Shaping Subsystem for High-Energy Laser Systems,” Lawrence Livermore Nat. Lab. Rep. UCRL-JC-111452 (Lawrence Livermore National Laboratory, Livermore, Calif., 1993).
  8. W. W. Simmons, J. T. Hunt, W. E. Warren, “Light propagation through large laser systems,” IEEE J. Quantum Electron. QE-17, 1727–1744 (1981).
    [CrossRef]

1983 (1)

W. W. Simmons, R. O. Godwin, “Nova laser fusion facility: design, engineering, and assembly overview,” Nucl. Tech. Fusion 4, 8–24 (1983).

1981 (1)

W. W. Simmons, J. T. Hunt, W. E. Warren, “Light propagation through large laser systems,” IEEE J. Quantum Electron. QE-17, 1727–1744 (1981).
[CrossRef]

1978 (1)

J. A. Fleck, J. R. Morris, E.-S. Bliss, “Small-scale self-focusing effects in a high-power glass laser amplifier,” IEEE J. Quantum Electron. QE-14, 353–363 (1978).
[CrossRef]

1977 (1)

1974 (1)

E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, “Propagation of a high-intensity laser pulse with small-scale intensity modulation,” Appl. Phys. Lett. 25, 448–450 (1974).
[CrossRef]

Bliss, E. S.

E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, “Propagation of a high-intensity laser pulse with small-scale intensity modulation,” Appl. Phys. Lett. 25, 448–450 (1974).
[CrossRef]

Bliss, E.-S.

J. A. Fleck, J. R. Morris, E.-S. Bliss, “Small-scale self-focusing effects in a high-power glass laser amplifier,” IEEE J. Quantum Electron. QE-14, 353–363 (1978).
[CrossRef]

Bracwell, R. N.

R. N. Bracwell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, New York, 1986), Chap. 8, p. 103.

Erkkila, J. H.

E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, “Propagation of a high-intensity laser pulse with small-scale intensity modulation,” Appl. Phys. Lett. 25, 448–450 (1974).
[CrossRef]

Fleck, J. A.

J. A. Fleck, J. R. Morris, E.-S. Bliss, “Small-scale self-focusing effects in a high-power glass laser amplifier,” IEEE J. Quantum Electron. QE-14, 353–363 (1978).
[CrossRef]

Glass, A. J.

E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, “Propagation of a high-intensity laser pulse with small-scale intensity modulation,” Appl. Phys. Lett. 25, 448–450 (1974).
[CrossRef]

Godwin, R. O.

W. W. Simmons, R. O. Godwin, “Nova laser fusion facility: design, engineering, and assembly overview,” Nucl. Tech. Fusion 4, 8–24 (1983).

Holzrichter, J. F.

E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, “Propagation of a high-intensity laser pulse with small-scale intensity modulation,” Appl. Phys. Lett. 25, 448–450 (1974).
[CrossRef]

Hunt, J. T.

W. W. Simmons, J. T. Hunt, W. E. Warren, “Light propagation through large laser systems,” IEEE J. Quantum Electron. QE-17, 1727–1744 (1981).
[CrossRef]

J. T. Hunt, P. A. Renard, W. W. Simmons, “Improved performance of fusion lasers using the imaging properties of multiple spatial filters,” Appl. Opt. 16, 779–782 (1977).
[PubMed]

Karpenko, V. P.

B. M. Van Wonterghem, D. R. Speck, M. Norman, R. B. Wilcox, V. P. Karpenko, J. B. Richards, “A Compact and Versatile Pulse-Generation and Shaping Subsystem for High-Energy Laser Systems,” Lawrence Livermore Nat. Lab. Rep. UCRL-JC-111452 (Lawrence Livermore National Laboratory, Livermore, Calif., 1993).

Morris, J. R.

J. A. Fleck, J. R. Morris, E.-S. Bliss, “Small-scale self-focusing effects in a high-power glass laser amplifier,” IEEE J. Quantum Electron. QE-14, 353–363 (1978).
[CrossRef]

Norman, M.

B. M. Van Wonterghem, D. R. Speck, M. Norman, R. B. Wilcox, V. P. Karpenko, J. B. Richards, “A Compact and Versatile Pulse-Generation and Shaping Subsystem for High-Energy Laser Systems,” Lawrence Livermore Nat. Lab. Rep. UCRL-JC-111452 (Lawrence Livermore National Laboratory, Livermore, Calif., 1993).

Renard, P. A.

Richards, J. B.

B. M. Van Wonterghem, D. R. Speck, M. Norman, R. B. Wilcox, V. P. Karpenko, J. B. Richards, “A Compact and Versatile Pulse-Generation and Shaping Subsystem for High-Energy Laser Systems,” Lawrence Livermore Nat. Lab. Rep. UCRL-JC-111452 (Lawrence Livermore National Laboratory, Livermore, Calif., 1993).

Simmons, W. W.

W. W. Simmons, R. O. Godwin, “Nova laser fusion facility: design, engineering, and assembly overview,” Nucl. Tech. Fusion 4, 8–24 (1983).

W. W. Simmons, J. T. Hunt, W. E. Warren, “Light propagation through large laser systems,” IEEE J. Quantum Electron. QE-17, 1727–1744 (1981).
[CrossRef]

J. T. Hunt, P. A. Renard, W. W. Simmons, “Improved performance of fusion lasers using the imaging properties of multiple spatial filters,” Appl. Opt. 16, 779–782 (1977).
[PubMed]

Speck, D. R.

E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, “Propagation of a high-intensity laser pulse with small-scale intensity modulation,” Appl. Phys. Lett. 25, 448–450 (1974).
[CrossRef]

B. M. Van Wonterghem, D. R. Speck, M. Norman, R. B. Wilcox, V. P. Karpenko, J. B. Richards, “A Compact and Versatile Pulse-Generation and Shaping Subsystem for High-Energy Laser Systems,” Lawrence Livermore Nat. Lab. Rep. UCRL-JC-111452 (Lawrence Livermore National Laboratory, Livermore, Calif., 1993).

Trenholme, J. B.

J. B. Trenholme, Laser Program, Lawrence Livermore National Laboratory, P.O. Box 5508, Livermore, Calif. 94550 (personal communication, 1March1978).

Van Wonterghem, B. M.

B. M. Van Wonterghem, D. R. Speck, M. Norman, R. B. Wilcox, V. P. Karpenko, J. B. Richards, “A Compact and Versatile Pulse-Generation and Shaping Subsystem for High-Energy Laser Systems,” Lawrence Livermore Nat. Lab. Rep. UCRL-JC-111452 (Lawrence Livermore National Laboratory, Livermore, Calif., 1993).

Warren, W. E.

W. W. Simmons, J. T. Hunt, W. E. Warren, “Light propagation through large laser systems,” IEEE J. Quantum Electron. QE-17, 1727–1744 (1981).
[CrossRef]

Wilcox, R. B.

B. M. Van Wonterghem, D. R. Speck, M. Norman, R. B. Wilcox, V. P. Karpenko, J. B. Richards, “A Compact and Versatile Pulse-Generation and Shaping Subsystem for High-Energy Laser Systems,” Lawrence Livermore Nat. Lab. Rep. UCRL-JC-111452 (Lawrence Livermore National Laboratory, Livermore, Calif., 1993).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, “Propagation of a high-intensity laser pulse with small-scale intensity modulation,” Appl. Phys. Lett. 25, 448–450 (1974).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. A. Fleck, J. R. Morris, E.-S. Bliss, “Small-scale self-focusing effects in a high-power glass laser amplifier,” IEEE J. Quantum Electron. QE-14, 353–363 (1978).
[CrossRef]

W. W. Simmons, J. T. Hunt, W. E. Warren, “Light propagation through large laser systems,” IEEE J. Quantum Electron. QE-17, 1727–1744 (1981).
[CrossRef]

Nucl. Tech. Fusion (1)

W. W. Simmons, R. O. Godwin, “Nova laser fusion facility: design, engineering, and assembly overview,” Nucl. Tech. Fusion 4, 8–24 (1983).

Other (3)

J. B. Trenholme, Laser Program, Lawrence Livermore National Laboratory, P.O. Box 5508, Livermore, Calif. 94550 (personal communication, 1March1978).

R. N. Bracwell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, New York, 1986), Chap. 8, p. 103.

B. M. Van Wonterghem, D. R. Speck, M. Norman, R. B. Wilcox, V. P. Karpenko, J. B. Richards, “A Compact and Versatile Pulse-Generation and Shaping Subsystem for High-Energy Laser Systems,” Lawrence Livermore Nat. Lab. Rep. UCRL-JC-111452 (Lawrence Livermore National Laboratory, Livermore, Calif., 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Operation of a serrated-aperture apodizer system. Periodic serration pattern initially imprinted on the beam is filtered to produce an output beam with smooth edge profiles.

Fig. 2
Fig. 2

Coordinate and parameter definitions for the serrated aperture.

Fig. 3
Fig. 3

Serration patterns and resulting edge profiles obtained through the filtering process: (a) sawtooth serration pattern and (b) corresponding edge profile; (c) Gaussian taper serration pattern and (d) corresponding edge profile.

Fig. 4
Fig. 4

Photograph of a section of the serrated aperture utilized in the Beamlet laser system. The precision limit on laser cutting has resulted in some roughness on the serrations.

Fig. 5
Fig. 5

Characteristics of the filtered beam distribution: (a) Photograph of filtered beam at output of Beamlet front end. Beam edges are smooth and the periodic variations due to the serrations have been removed, (b) Lineout through center of beam distribution. The edge profile shape is Gaussian. Also shown is the edge profile predicted by the laser propagation code malaprop, which has been used to model the Beamlet front end laser subsystems.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

h ( x x , y y ) g ( x , y ) d x d y = H G .
H ( ξ , η ) = 0 , | ξ | > a , | η | > a ,
H ( ξ , η ) = 1 , a ξ a , a η a .
h ( x , y ) = a 2 sinc ( k a x f ) sinc ( k a y f ) ,
k a ς f = π ,
ς = f λ 2 a .
a f λ 2 L .
H / L 6 .
I ( y ) I 0 Δ ( y ) Δ 0 .
h ( r ) = J 1 ( k r a f ) ( k r a f ) ,
k r a f = 3 . 83 ,

Metrics