Abstract

We describe an approach to achieve the optical perfect-shuffle interconnection network in an ordinary optical imaging system; a holographic grating is inserted in the proper position, and a corresponding spatial filter is inserted in its back focal plane. This approach is simple, and the space–bandwidth product of the optical system can be better utilized. As an experimental demonstration, the perfect-shuffle interconnection network is shown in one and in two dimensions.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 153–161 (1971).
    [CrossRef]
  2. A. W. Lohmann, “What classical optics can do for the digital optical computer,” Appl. Opt. 25, 1543–1549 (1986).
    [CrossRef] [PubMed]
  3. G. Eichmann, Y. Li, “Compact optical generalized perfect shuffle,” Appl. Opt. 26, 1167–1169 (1987).
    [CrossRef]
  4. A. W. Lohmann, W. Stock, G. Struck, “Optical perfect shuffle,” Appl. Opt. 25, 1530–1531 (1986).
    [CrossRef] [PubMed]
  5. C. W. Stirk, R. A. Athale, M. W. Haney, “Folded perfect shuffle optical processor,” Appl. Opt. 27, 202–203 (1988).
    [CrossRef] [PubMed]
  6. K.-H. Brenner, A. Huang, “Optical implementation of the perfect shuffle interconnection network,” Appl. Opt. 27, 135–137(1988).
    [CrossRef] [PubMed]
  7. Y. Sheng, “Light effective 2-D optical perfect shuffle using Fresnel mirrors,” Appl. Opt. 28, 3290–3292 (1989).
    [CrossRef] [PubMed]
  8. G. E. Lohman, A. W. Lohmann, “Optical interconnection network utilizing diffraction gratings,” Opt. Eng. 27, 893–898 (1988).
  9. Q. W. Song, F. T. S. Yu, “Generalized perfect shuffle using optical spatial filtering,” Appl. Opt. 27, 1222–1223 (1988).
    [CrossRef] [PubMed]
  10. J. Zhou, W. Gao, “Optical perfect shuffle using a CGH element,” Acta Opt. Sin. 11, 477–480 (1991).
  11. M. W. Haney, J. J. Levy, “Optically efficient free-space folded perfect shuffle network,” Appl. Opt. 30, 2833–2840 (1991).
    [CrossRef] [PubMed]
  12. H. Kang, J-Y. Zhang, Y.-L. Zhan, “Optical implementation of the folded perfect shuffle interconnection network using 2-D gratings,” Acta Opt. Sin. 13, 564–567 (1993).
  13. Y.-L. Zhan, H. Kang, J.-Y. Zhang, “Optical implementation of the folded perfect shuffle interconnection network using quadrant-encoded gratings,” Opt. Eng. 32, 1657–1661 (1993).
    [CrossRef]

1993

H. Kang, J-Y. Zhang, Y.-L. Zhan, “Optical implementation of the folded perfect shuffle interconnection network using 2-D gratings,” Acta Opt. Sin. 13, 564–567 (1993).

Y.-L. Zhan, H. Kang, J.-Y. Zhang, “Optical implementation of the folded perfect shuffle interconnection network using quadrant-encoded gratings,” Opt. Eng. 32, 1657–1661 (1993).
[CrossRef]

1991

J. Zhou, W. Gao, “Optical perfect shuffle using a CGH element,” Acta Opt. Sin. 11, 477–480 (1991).

M. W. Haney, J. J. Levy, “Optically efficient free-space folded perfect shuffle network,” Appl. Opt. 30, 2833–2840 (1991).
[CrossRef] [PubMed]

1989

1988

1987

1986

1971

H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 153–161 (1971).
[CrossRef]

Athale, R. A.

Brenner, K.-H.

Eichmann, G.

Gao, W.

J. Zhou, W. Gao, “Optical perfect shuffle using a CGH element,” Acta Opt. Sin. 11, 477–480 (1991).

Haney, M. W.

Huang, A.

Kang, H.

H. Kang, J-Y. Zhang, Y.-L. Zhan, “Optical implementation of the folded perfect shuffle interconnection network using 2-D gratings,” Acta Opt. Sin. 13, 564–567 (1993).

Y.-L. Zhan, H. Kang, J.-Y. Zhang, “Optical implementation of the folded perfect shuffle interconnection network using quadrant-encoded gratings,” Opt. Eng. 32, 1657–1661 (1993).
[CrossRef]

Levy, J. J.

Li, Y.

Lohman, G. E.

G. E. Lohman, A. W. Lohmann, “Optical interconnection network utilizing diffraction gratings,” Opt. Eng. 27, 893–898 (1988).

Lohmann, A. W.

Sheng, Y.

Song, Q. W.

Stirk, C. W.

Stock, W.

Stone, H. S.

H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 153–161 (1971).
[CrossRef]

Struck, G.

Yu, F. T. S.

Zhan, Y.-L.

H. Kang, J-Y. Zhang, Y.-L. Zhan, “Optical implementation of the folded perfect shuffle interconnection network using 2-D gratings,” Acta Opt. Sin. 13, 564–567 (1993).

Y.-L. Zhan, H. Kang, J.-Y. Zhang, “Optical implementation of the folded perfect shuffle interconnection network using quadrant-encoded gratings,” Opt. Eng. 32, 1657–1661 (1993).
[CrossRef]

Zhang, J.-Y.

Y.-L. Zhan, H. Kang, J.-Y. Zhang, “Optical implementation of the folded perfect shuffle interconnection network using quadrant-encoded gratings,” Opt. Eng. 32, 1657–1661 (1993).
[CrossRef]

Zhang, J-Y.

H. Kang, J-Y. Zhang, Y.-L. Zhan, “Optical implementation of the folded perfect shuffle interconnection network using 2-D gratings,” Acta Opt. Sin. 13, 564–567 (1993).

Zhou, J.

J. Zhou, W. Gao, “Optical perfect shuffle using a CGH element,” Acta Opt. Sin. 11, 477–480 (1991).

Acta Opt. Sin.

J. Zhou, W. Gao, “Optical perfect shuffle using a CGH element,” Acta Opt. Sin. 11, 477–480 (1991).

H. Kang, J-Y. Zhang, Y.-L. Zhan, “Optical implementation of the folded perfect shuffle interconnection network using 2-D gratings,” Acta Opt. Sin. 13, 564–567 (1993).

Appl. Opt.

IEEE Trans. Comput.

H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 153–161 (1971).
[CrossRef]

Opt. Eng.

G. E. Lohman, A. W. Lohmann, “Optical interconnection network utilizing diffraction gratings,” Opt. Eng. 27, 893–898 (1988).

Y.-L. Zhan, H. Kang, J.-Y. Zhang, “Optical implementation of the folded perfect shuffle interconnection network using quadrant-encoded gratings,” Opt. Eng. 32, 1657–1661 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Achievement of the 1-D perfect shuffle.

Fig. 2
Fig. 2

Achievement of the 2-D perfect shuffle.

Fig. 3
Fig. 3

Optical setup for achieving the perfect-shuffle interconnection network.

Fig. 4
Fig. 4

Two-dimensional spatial filter.

Fig. 5
Fig. 5

Experimental results: (a) the input data, (b) the output results.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

y 0 = ( l - x 2 ) tan α ,
y 0 = tan α ( l x 1 + f l + f - x 1 ) ,
f ( y ± 2 2 y 0 , z ± 2 2 z 0 )
δ y = N - 1 2 l l b .

Metrics