Abstract

The monolithic integration of N-channel metal-oxide-semiconductor (NMOS) driver circuits in silicon thin films onto a lead lanthanum zirconate titanate (PLZT) substrate is reported. Two integration methods are compared. Both methods result in NMOS transistors that exhibit electrical properties that are close to those of transistors fabricated in bulk silicon. The characteristics of PLZT modulators driven by thin-film transistors are also similar to those of bulk PLZT modulators. These techniques promise new spatial light modulators of high complexity and performance that good-quality silicon and bulk PLZT can offer.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Moddel, K. M. Johnson, W. Li, R. A. Rice, L. A. Pagano-Stauffer, M. A. Handschy, “High-speed binary optically addressed spatial light modulator,” Appl. Phys. Lett. 55, 537–539 (1989).
    [CrossRef]
  2. L. K. Cotter, T. J. Drabik, R. J. Dillon, M. A. Handschy, “Ferroelectric-liquid-crystal/silicon-integrated-circuit spatial light modulator,” Opt. Lett. 15, 291–293 (1990).
    [CrossRef] [PubMed]
  3. D. Armitage, D. K. Kinell, “Liquid-crystal integrated silicon spatial light modulator,” Appl. Opt. 31, 3945–3949 (1992).
    [CrossRef] [PubMed]
  4. D. Miller, L. Chirovsky, T. K. Woodward, T. Lentine, R. McCormick, S. Hinton, “SEED principles 1 and 2,” ARPA/AT&T FET-SEED Workshop Notes (AT&T, Newark, N.J., 1993).
  5. A. Ersen, S. Krishnakumar, V. Ozguz, J. Wang, S. Esener, S. H. Lee, “Design issues and development of monolithic silicon/lead lanthanum zirconate titanate integration technologies for smart spatial light modulators,” Appl. Opt. 31, 3950–3965 (1992).
    [CrossRef] [PubMed]
  6. S. Krishnakumar, V. H. Ozguz, C. Fan, C. Cozzolino, S. C. Esener, S. H. Lee, “Deposition and characterization of thin ferroelectric lead lanthanum zirconate titanate (PLZT) films on sapphire for spatial light modulator applications,” IEEE Trans. Ultrason. Ferroelectr. Frequency Control 38, 585–590 (1991).
    [CrossRef]
  7. W. Van der Wel, R. Buchner, K. Habenerger, S. Seitz, J. Weber, P. Seegebrecht, “Avoidance of substrate damage upon laser recrystallization of a SOI layer,” J. Electrochem. Soc. 138, 1117–1122 (1991).
    [CrossRef]
  8. E. Yablonovitch, D. M. Wang, T. J. Gmitter, L. T. Florez, “Van der Waals bonding of GaAs epitaxial lift-off films on to arbitrary substrates,” Appl. Phys. Lett. 56, 2419 (1990).
    [CrossRef]
  9. A. Yi-Yan, W. K. Chan, T. J. Gmitter, L. T. Florez, J. L. Jackel, E. Yablonovitch, R. Bhat, J. P. Harbison, “Grafted GaAs detectors on lithium niobate and glass optical waveguides,” IEEE Photon. Tech. Lett. 1, 379–380 (1989).
    [CrossRef]
  10. C. Camperi-Ginestet, M. Hargis, N. Jokerst, M. Allen, “Alignable epitaxial liftoff of GaAs material with selective deposition using polyimide diaphragms,” IEEE Photon. Tech. Lett. 3, 1123–1126 (1991).
    [CrossRef]
  11. G. P. Imthurn, G. A. Garcia, “Bonded silicon-on-sapphire wafers and devices,” J. Appl. Phys. 72, 2526–2527 (1992).
    [CrossRef]
  12. J. H. Wang, M. S. Jin, V. Ozguz, S. H. Lee, “N-channel metal-oxide-semiconductor transistors fabricated in a silicon film bonded onto sapphire,” Appl. Phys. Lett. (to be published).
  13. Y. Hayashi, S. Wada, K. Kajiyana, K. Oyama, R. Koh, S. Takahashi, T. Kunio, “Fabrication of three-dimensional IC using cumulatively bonded IC (CUBIC) technology,” in Proceedings of the 1990 Symposium on VLSI Technology (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 95–96.
    [CrossRef]
  14. M. S. Jin, J. H. Wang, V. H. Ozguz, S. H. Lee, “Bonding of Si thin films to PLZT substrates for smart spatial light modulator applications,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 123–126.
  15. B. Mansoorian, G. Marsden, V. Ozguz, C. Fan, S. Esener, “Characterization of a free-space optoelectronic interconnect system based on Si/PLZT smart pixels,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 128–131.

1992 (3)

1991 (3)

C. Camperi-Ginestet, M. Hargis, N. Jokerst, M. Allen, “Alignable epitaxial liftoff of GaAs material with selective deposition using polyimide diaphragms,” IEEE Photon. Tech. Lett. 3, 1123–1126 (1991).
[CrossRef]

S. Krishnakumar, V. H. Ozguz, C. Fan, C. Cozzolino, S. C. Esener, S. H. Lee, “Deposition and characterization of thin ferroelectric lead lanthanum zirconate titanate (PLZT) films on sapphire for spatial light modulator applications,” IEEE Trans. Ultrason. Ferroelectr. Frequency Control 38, 585–590 (1991).
[CrossRef]

W. Van der Wel, R. Buchner, K. Habenerger, S. Seitz, J. Weber, P. Seegebrecht, “Avoidance of substrate damage upon laser recrystallization of a SOI layer,” J. Electrochem. Soc. 138, 1117–1122 (1991).
[CrossRef]

1990 (2)

E. Yablonovitch, D. M. Wang, T. J. Gmitter, L. T. Florez, “Van der Waals bonding of GaAs epitaxial lift-off films on to arbitrary substrates,” Appl. Phys. Lett. 56, 2419 (1990).
[CrossRef]

L. K. Cotter, T. J. Drabik, R. J. Dillon, M. A. Handschy, “Ferroelectric-liquid-crystal/silicon-integrated-circuit spatial light modulator,” Opt. Lett. 15, 291–293 (1990).
[CrossRef] [PubMed]

1989 (2)

G. Moddel, K. M. Johnson, W. Li, R. A. Rice, L. A. Pagano-Stauffer, M. A. Handschy, “High-speed binary optically addressed spatial light modulator,” Appl. Phys. Lett. 55, 537–539 (1989).
[CrossRef]

A. Yi-Yan, W. K. Chan, T. J. Gmitter, L. T. Florez, J. L. Jackel, E. Yablonovitch, R. Bhat, J. P. Harbison, “Grafted GaAs detectors on lithium niobate and glass optical waveguides,” IEEE Photon. Tech. Lett. 1, 379–380 (1989).
[CrossRef]

Allen, M.

C. Camperi-Ginestet, M. Hargis, N. Jokerst, M. Allen, “Alignable epitaxial liftoff of GaAs material with selective deposition using polyimide diaphragms,” IEEE Photon. Tech. Lett. 3, 1123–1126 (1991).
[CrossRef]

Armitage, D.

Bhat, R.

A. Yi-Yan, W. K. Chan, T. J. Gmitter, L. T. Florez, J. L. Jackel, E. Yablonovitch, R. Bhat, J. P. Harbison, “Grafted GaAs detectors on lithium niobate and glass optical waveguides,” IEEE Photon. Tech. Lett. 1, 379–380 (1989).
[CrossRef]

Buchner, R.

W. Van der Wel, R. Buchner, K. Habenerger, S. Seitz, J. Weber, P. Seegebrecht, “Avoidance of substrate damage upon laser recrystallization of a SOI layer,” J. Electrochem. Soc. 138, 1117–1122 (1991).
[CrossRef]

Camperi-Ginestet, C.

C. Camperi-Ginestet, M. Hargis, N. Jokerst, M. Allen, “Alignable epitaxial liftoff of GaAs material with selective deposition using polyimide diaphragms,” IEEE Photon. Tech. Lett. 3, 1123–1126 (1991).
[CrossRef]

Chan, W. K.

A. Yi-Yan, W. K. Chan, T. J. Gmitter, L. T. Florez, J. L. Jackel, E. Yablonovitch, R. Bhat, J. P. Harbison, “Grafted GaAs detectors on lithium niobate and glass optical waveguides,” IEEE Photon. Tech. Lett. 1, 379–380 (1989).
[CrossRef]

Chirovsky, L.

D. Miller, L. Chirovsky, T. K. Woodward, T. Lentine, R. McCormick, S. Hinton, “SEED principles 1 and 2,” ARPA/AT&T FET-SEED Workshop Notes (AT&T, Newark, N.J., 1993).

Cotter, L. K.

Cozzolino, C.

S. Krishnakumar, V. H. Ozguz, C. Fan, C. Cozzolino, S. C. Esener, S. H. Lee, “Deposition and characterization of thin ferroelectric lead lanthanum zirconate titanate (PLZT) films on sapphire for spatial light modulator applications,” IEEE Trans. Ultrason. Ferroelectr. Frequency Control 38, 585–590 (1991).
[CrossRef]

Dillon, R. J.

Drabik, T. J.

Ersen, A.

Esener, S.

A. Ersen, S. Krishnakumar, V. Ozguz, J. Wang, S. Esener, S. H. Lee, “Design issues and development of monolithic silicon/lead lanthanum zirconate titanate integration technologies for smart spatial light modulators,” Appl. Opt. 31, 3950–3965 (1992).
[CrossRef] [PubMed]

B. Mansoorian, G. Marsden, V. Ozguz, C. Fan, S. Esener, “Characterization of a free-space optoelectronic interconnect system based on Si/PLZT smart pixels,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 128–131.

Esener, S. C.

S. Krishnakumar, V. H. Ozguz, C. Fan, C. Cozzolino, S. C. Esener, S. H. Lee, “Deposition and characterization of thin ferroelectric lead lanthanum zirconate titanate (PLZT) films on sapphire for spatial light modulator applications,” IEEE Trans. Ultrason. Ferroelectr. Frequency Control 38, 585–590 (1991).
[CrossRef]

Fan, C.

S. Krishnakumar, V. H. Ozguz, C. Fan, C. Cozzolino, S. C. Esener, S. H. Lee, “Deposition and characterization of thin ferroelectric lead lanthanum zirconate titanate (PLZT) films on sapphire for spatial light modulator applications,” IEEE Trans. Ultrason. Ferroelectr. Frequency Control 38, 585–590 (1991).
[CrossRef]

B. Mansoorian, G. Marsden, V. Ozguz, C. Fan, S. Esener, “Characterization of a free-space optoelectronic interconnect system based on Si/PLZT smart pixels,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 128–131.

Florez, L. T.

E. Yablonovitch, D. M. Wang, T. J. Gmitter, L. T. Florez, “Van der Waals bonding of GaAs epitaxial lift-off films on to arbitrary substrates,” Appl. Phys. Lett. 56, 2419 (1990).
[CrossRef]

A. Yi-Yan, W. K. Chan, T. J. Gmitter, L. T. Florez, J. L. Jackel, E. Yablonovitch, R. Bhat, J. P. Harbison, “Grafted GaAs detectors on lithium niobate and glass optical waveguides,” IEEE Photon. Tech. Lett. 1, 379–380 (1989).
[CrossRef]

Garcia, G. A.

G. P. Imthurn, G. A. Garcia, “Bonded silicon-on-sapphire wafers and devices,” J. Appl. Phys. 72, 2526–2527 (1992).
[CrossRef]

Gmitter, T. J.

E. Yablonovitch, D. M. Wang, T. J. Gmitter, L. T. Florez, “Van der Waals bonding of GaAs epitaxial lift-off films on to arbitrary substrates,” Appl. Phys. Lett. 56, 2419 (1990).
[CrossRef]

A. Yi-Yan, W. K. Chan, T. J. Gmitter, L. T. Florez, J. L. Jackel, E. Yablonovitch, R. Bhat, J. P. Harbison, “Grafted GaAs detectors on lithium niobate and glass optical waveguides,” IEEE Photon. Tech. Lett. 1, 379–380 (1989).
[CrossRef]

Habenerger, K.

W. Van der Wel, R. Buchner, K. Habenerger, S. Seitz, J. Weber, P. Seegebrecht, “Avoidance of substrate damage upon laser recrystallization of a SOI layer,” J. Electrochem. Soc. 138, 1117–1122 (1991).
[CrossRef]

Handschy, M. A.

L. K. Cotter, T. J. Drabik, R. J. Dillon, M. A. Handschy, “Ferroelectric-liquid-crystal/silicon-integrated-circuit spatial light modulator,” Opt. Lett. 15, 291–293 (1990).
[CrossRef] [PubMed]

G. Moddel, K. M. Johnson, W. Li, R. A. Rice, L. A. Pagano-Stauffer, M. A. Handschy, “High-speed binary optically addressed spatial light modulator,” Appl. Phys. Lett. 55, 537–539 (1989).
[CrossRef]

Harbison, J. P.

A. Yi-Yan, W. K. Chan, T. J. Gmitter, L. T. Florez, J. L. Jackel, E. Yablonovitch, R. Bhat, J. P. Harbison, “Grafted GaAs detectors on lithium niobate and glass optical waveguides,” IEEE Photon. Tech. Lett. 1, 379–380 (1989).
[CrossRef]

Hargis, M.

C. Camperi-Ginestet, M. Hargis, N. Jokerst, M. Allen, “Alignable epitaxial liftoff of GaAs material with selective deposition using polyimide diaphragms,” IEEE Photon. Tech. Lett. 3, 1123–1126 (1991).
[CrossRef]

Hayashi, Y.

Y. Hayashi, S. Wada, K. Kajiyana, K. Oyama, R. Koh, S. Takahashi, T. Kunio, “Fabrication of three-dimensional IC using cumulatively bonded IC (CUBIC) technology,” in Proceedings of the 1990 Symposium on VLSI Technology (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 95–96.
[CrossRef]

Hinton, S.

D. Miller, L. Chirovsky, T. K. Woodward, T. Lentine, R. McCormick, S. Hinton, “SEED principles 1 and 2,” ARPA/AT&T FET-SEED Workshop Notes (AT&T, Newark, N.J., 1993).

Imthurn, G. P.

G. P. Imthurn, G. A. Garcia, “Bonded silicon-on-sapphire wafers and devices,” J. Appl. Phys. 72, 2526–2527 (1992).
[CrossRef]

Jackel, J. L.

A. Yi-Yan, W. K. Chan, T. J. Gmitter, L. T. Florez, J. L. Jackel, E. Yablonovitch, R. Bhat, J. P. Harbison, “Grafted GaAs detectors on lithium niobate and glass optical waveguides,” IEEE Photon. Tech. Lett. 1, 379–380 (1989).
[CrossRef]

Jin, M. S.

J. H. Wang, M. S. Jin, V. Ozguz, S. H. Lee, “N-channel metal-oxide-semiconductor transistors fabricated in a silicon film bonded onto sapphire,” Appl. Phys. Lett. (to be published).

M. S. Jin, J. H. Wang, V. H. Ozguz, S. H. Lee, “Bonding of Si thin films to PLZT substrates for smart spatial light modulator applications,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 123–126.

Johnson, K. M.

G. Moddel, K. M. Johnson, W. Li, R. A. Rice, L. A. Pagano-Stauffer, M. A. Handschy, “High-speed binary optically addressed spatial light modulator,” Appl. Phys. Lett. 55, 537–539 (1989).
[CrossRef]

Jokerst, N.

C. Camperi-Ginestet, M. Hargis, N. Jokerst, M. Allen, “Alignable epitaxial liftoff of GaAs material with selective deposition using polyimide diaphragms,” IEEE Photon. Tech. Lett. 3, 1123–1126 (1991).
[CrossRef]

Kajiyana, K.

Y. Hayashi, S. Wada, K. Kajiyana, K. Oyama, R. Koh, S. Takahashi, T. Kunio, “Fabrication of three-dimensional IC using cumulatively bonded IC (CUBIC) technology,” in Proceedings of the 1990 Symposium on VLSI Technology (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 95–96.
[CrossRef]

Kinell, D. K.

Koh, R.

Y. Hayashi, S. Wada, K. Kajiyana, K. Oyama, R. Koh, S. Takahashi, T. Kunio, “Fabrication of three-dimensional IC using cumulatively bonded IC (CUBIC) technology,” in Proceedings of the 1990 Symposium on VLSI Technology (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 95–96.
[CrossRef]

Krishnakumar, S.

A. Ersen, S. Krishnakumar, V. Ozguz, J. Wang, S. Esener, S. H. Lee, “Design issues and development of monolithic silicon/lead lanthanum zirconate titanate integration technologies for smart spatial light modulators,” Appl. Opt. 31, 3950–3965 (1992).
[CrossRef] [PubMed]

S. Krishnakumar, V. H. Ozguz, C. Fan, C. Cozzolino, S. C. Esener, S. H. Lee, “Deposition and characterization of thin ferroelectric lead lanthanum zirconate titanate (PLZT) films on sapphire for spatial light modulator applications,” IEEE Trans. Ultrason. Ferroelectr. Frequency Control 38, 585–590 (1991).
[CrossRef]

Kunio, T.

Y. Hayashi, S. Wada, K. Kajiyana, K. Oyama, R. Koh, S. Takahashi, T. Kunio, “Fabrication of three-dimensional IC using cumulatively bonded IC (CUBIC) technology,” in Proceedings of the 1990 Symposium on VLSI Technology (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 95–96.
[CrossRef]

Lee, S. H.

A. Ersen, S. Krishnakumar, V. Ozguz, J. Wang, S. Esener, S. H. Lee, “Design issues and development of monolithic silicon/lead lanthanum zirconate titanate integration technologies for smart spatial light modulators,” Appl. Opt. 31, 3950–3965 (1992).
[CrossRef] [PubMed]

S. Krishnakumar, V. H. Ozguz, C. Fan, C. Cozzolino, S. C. Esener, S. H. Lee, “Deposition and characterization of thin ferroelectric lead lanthanum zirconate titanate (PLZT) films on sapphire for spatial light modulator applications,” IEEE Trans. Ultrason. Ferroelectr. Frequency Control 38, 585–590 (1991).
[CrossRef]

J. H. Wang, M. S. Jin, V. Ozguz, S. H. Lee, “N-channel metal-oxide-semiconductor transistors fabricated in a silicon film bonded onto sapphire,” Appl. Phys. Lett. (to be published).

M. S. Jin, J. H. Wang, V. H. Ozguz, S. H. Lee, “Bonding of Si thin films to PLZT substrates for smart spatial light modulator applications,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 123–126.

Lentine, T.

D. Miller, L. Chirovsky, T. K. Woodward, T. Lentine, R. McCormick, S. Hinton, “SEED principles 1 and 2,” ARPA/AT&T FET-SEED Workshop Notes (AT&T, Newark, N.J., 1993).

Li, W.

G. Moddel, K. M. Johnson, W. Li, R. A. Rice, L. A. Pagano-Stauffer, M. A. Handschy, “High-speed binary optically addressed spatial light modulator,” Appl. Phys. Lett. 55, 537–539 (1989).
[CrossRef]

Mansoorian, B.

B. Mansoorian, G. Marsden, V. Ozguz, C. Fan, S. Esener, “Characterization of a free-space optoelectronic interconnect system based on Si/PLZT smart pixels,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 128–131.

Marsden, G.

B. Mansoorian, G. Marsden, V. Ozguz, C. Fan, S. Esener, “Characterization of a free-space optoelectronic interconnect system based on Si/PLZT smart pixels,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 128–131.

McCormick, R.

D. Miller, L. Chirovsky, T. K. Woodward, T. Lentine, R. McCormick, S. Hinton, “SEED principles 1 and 2,” ARPA/AT&T FET-SEED Workshop Notes (AT&T, Newark, N.J., 1993).

Miller, D.

D. Miller, L. Chirovsky, T. K. Woodward, T. Lentine, R. McCormick, S. Hinton, “SEED principles 1 and 2,” ARPA/AT&T FET-SEED Workshop Notes (AT&T, Newark, N.J., 1993).

Moddel, G.

G. Moddel, K. M. Johnson, W. Li, R. A. Rice, L. A. Pagano-Stauffer, M. A. Handschy, “High-speed binary optically addressed spatial light modulator,” Appl. Phys. Lett. 55, 537–539 (1989).
[CrossRef]

Oyama, K.

Y. Hayashi, S. Wada, K. Kajiyana, K. Oyama, R. Koh, S. Takahashi, T. Kunio, “Fabrication of three-dimensional IC using cumulatively bonded IC (CUBIC) technology,” in Proceedings of the 1990 Symposium on VLSI Technology (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 95–96.
[CrossRef]

Ozguz, V.

A. Ersen, S. Krishnakumar, V. Ozguz, J. Wang, S. Esener, S. H. Lee, “Design issues and development of monolithic silicon/lead lanthanum zirconate titanate integration technologies for smart spatial light modulators,” Appl. Opt. 31, 3950–3965 (1992).
[CrossRef] [PubMed]

B. Mansoorian, G. Marsden, V. Ozguz, C. Fan, S. Esener, “Characterization of a free-space optoelectronic interconnect system based on Si/PLZT smart pixels,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 128–131.

J. H. Wang, M. S. Jin, V. Ozguz, S. H. Lee, “N-channel metal-oxide-semiconductor transistors fabricated in a silicon film bonded onto sapphire,” Appl. Phys. Lett. (to be published).

Ozguz, V. H.

S. Krishnakumar, V. H. Ozguz, C. Fan, C. Cozzolino, S. C. Esener, S. H. Lee, “Deposition and characterization of thin ferroelectric lead lanthanum zirconate titanate (PLZT) films on sapphire for spatial light modulator applications,” IEEE Trans. Ultrason. Ferroelectr. Frequency Control 38, 585–590 (1991).
[CrossRef]

M. S. Jin, J. H. Wang, V. H. Ozguz, S. H. Lee, “Bonding of Si thin films to PLZT substrates for smart spatial light modulator applications,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 123–126.

Pagano-Stauffer, L. A.

G. Moddel, K. M. Johnson, W. Li, R. A. Rice, L. A. Pagano-Stauffer, M. A. Handschy, “High-speed binary optically addressed spatial light modulator,” Appl. Phys. Lett. 55, 537–539 (1989).
[CrossRef]

Rice, R. A.

G. Moddel, K. M. Johnson, W. Li, R. A. Rice, L. A. Pagano-Stauffer, M. A. Handschy, “High-speed binary optically addressed spatial light modulator,” Appl. Phys. Lett. 55, 537–539 (1989).
[CrossRef]

Seegebrecht, P.

W. Van der Wel, R. Buchner, K. Habenerger, S. Seitz, J. Weber, P. Seegebrecht, “Avoidance of substrate damage upon laser recrystallization of a SOI layer,” J. Electrochem. Soc. 138, 1117–1122 (1991).
[CrossRef]

Seitz, S.

W. Van der Wel, R. Buchner, K. Habenerger, S. Seitz, J. Weber, P. Seegebrecht, “Avoidance of substrate damage upon laser recrystallization of a SOI layer,” J. Electrochem. Soc. 138, 1117–1122 (1991).
[CrossRef]

Takahashi, S.

Y. Hayashi, S. Wada, K. Kajiyana, K. Oyama, R. Koh, S. Takahashi, T. Kunio, “Fabrication of three-dimensional IC using cumulatively bonded IC (CUBIC) technology,” in Proceedings of the 1990 Symposium on VLSI Technology (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 95–96.
[CrossRef]

Van der Wel, W.

W. Van der Wel, R. Buchner, K. Habenerger, S. Seitz, J. Weber, P. Seegebrecht, “Avoidance of substrate damage upon laser recrystallization of a SOI layer,” J. Electrochem. Soc. 138, 1117–1122 (1991).
[CrossRef]

Wada, S.

Y. Hayashi, S. Wada, K. Kajiyana, K. Oyama, R. Koh, S. Takahashi, T. Kunio, “Fabrication of three-dimensional IC using cumulatively bonded IC (CUBIC) technology,” in Proceedings of the 1990 Symposium on VLSI Technology (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 95–96.
[CrossRef]

Wang, D. M.

E. Yablonovitch, D. M. Wang, T. J. Gmitter, L. T. Florez, “Van der Waals bonding of GaAs epitaxial lift-off films on to arbitrary substrates,” Appl. Phys. Lett. 56, 2419 (1990).
[CrossRef]

Wang, J.

Wang, J. H.

J. H. Wang, M. S. Jin, V. Ozguz, S. H. Lee, “N-channel metal-oxide-semiconductor transistors fabricated in a silicon film bonded onto sapphire,” Appl. Phys. Lett. (to be published).

M. S. Jin, J. H. Wang, V. H. Ozguz, S. H. Lee, “Bonding of Si thin films to PLZT substrates for smart spatial light modulator applications,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 123–126.

Weber, J.

W. Van der Wel, R. Buchner, K. Habenerger, S. Seitz, J. Weber, P. Seegebrecht, “Avoidance of substrate damage upon laser recrystallization of a SOI layer,” J. Electrochem. Soc. 138, 1117–1122 (1991).
[CrossRef]

Woodward, T. K.

D. Miller, L. Chirovsky, T. K. Woodward, T. Lentine, R. McCormick, S. Hinton, “SEED principles 1 and 2,” ARPA/AT&T FET-SEED Workshop Notes (AT&T, Newark, N.J., 1993).

Yablonovitch, E.

E. Yablonovitch, D. M. Wang, T. J. Gmitter, L. T. Florez, “Van der Waals bonding of GaAs epitaxial lift-off films on to arbitrary substrates,” Appl. Phys. Lett. 56, 2419 (1990).
[CrossRef]

A. Yi-Yan, W. K. Chan, T. J. Gmitter, L. T. Florez, J. L. Jackel, E. Yablonovitch, R. Bhat, J. P. Harbison, “Grafted GaAs detectors on lithium niobate and glass optical waveguides,” IEEE Photon. Tech. Lett. 1, 379–380 (1989).
[CrossRef]

Yi-Yan, A.

A. Yi-Yan, W. K. Chan, T. J. Gmitter, L. T. Florez, J. L. Jackel, E. Yablonovitch, R. Bhat, J. P. Harbison, “Grafted GaAs detectors on lithium niobate and glass optical waveguides,” IEEE Photon. Tech. Lett. 1, 379–380 (1989).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

G. Moddel, K. M. Johnson, W. Li, R. A. Rice, L. A. Pagano-Stauffer, M. A. Handschy, “High-speed binary optically addressed spatial light modulator,” Appl. Phys. Lett. 55, 537–539 (1989).
[CrossRef]

E. Yablonovitch, D. M. Wang, T. J. Gmitter, L. T. Florez, “Van der Waals bonding of GaAs epitaxial lift-off films on to arbitrary substrates,” Appl. Phys. Lett. 56, 2419 (1990).
[CrossRef]

IEEE Photon. Tech. Lett. (2)

A. Yi-Yan, W. K. Chan, T. J. Gmitter, L. T. Florez, J. L. Jackel, E. Yablonovitch, R. Bhat, J. P. Harbison, “Grafted GaAs detectors on lithium niobate and glass optical waveguides,” IEEE Photon. Tech. Lett. 1, 379–380 (1989).
[CrossRef]

C. Camperi-Ginestet, M. Hargis, N. Jokerst, M. Allen, “Alignable epitaxial liftoff of GaAs material with selective deposition using polyimide diaphragms,” IEEE Photon. Tech. Lett. 3, 1123–1126 (1991).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Frequency Control (1)

S. Krishnakumar, V. H. Ozguz, C. Fan, C. Cozzolino, S. C. Esener, S. H. Lee, “Deposition and characterization of thin ferroelectric lead lanthanum zirconate titanate (PLZT) films on sapphire for spatial light modulator applications,” IEEE Trans. Ultrason. Ferroelectr. Frequency Control 38, 585–590 (1991).
[CrossRef]

J. Appl. Phys. (1)

G. P. Imthurn, G. A. Garcia, “Bonded silicon-on-sapphire wafers and devices,” J. Appl. Phys. 72, 2526–2527 (1992).
[CrossRef]

J. Electrochem. Soc. (1)

W. Van der Wel, R. Buchner, K. Habenerger, S. Seitz, J. Weber, P. Seegebrecht, “Avoidance of substrate damage upon laser recrystallization of a SOI layer,” J. Electrochem. Soc. 138, 1117–1122 (1991).
[CrossRef]

Opt. Lett. (1)

Other (5)

D. Miller, L. Chirovsky, T. K. Woodward, T. Lentine, R. McCormick, S. Hinton, “SEED principles 1 and 2,” ARPA/AT&T FET-SEED Workshop Notes (AT&T, Newark, N.J., 1993).

J. H. Wang, M. S. Jin, V. Ozguz, S. H. Lee, “N-channel metal-oxide-semiconductor transistors fabricated in a silicon film bonded onto sapphire,” Appl. Phys. Lett. (to be published).

Y. Hayashi, S. Wada, K. Kajiyana, K. Oyama, R. Koh, S. Takahashi, T. Kunio, “Fabrication of three-dimensional IC using cumulatively bonded IC (CUBIC) technology,” in Proceedings of the 1990 Symposium on VLSI Technology (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 95–96.
[CrossRef]

M. S. Jin, J. H. Wang, V. H. Ozguz, S. H. Lee, “Bonding of Si thin films to PLZT substrates for smart spatial light modulator applications,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 123–126.

B. Mansoorian, G. Marsden, V. Ozguz, C. Fan, S. Esener, “Characterization of a free-space optoelectronic interconnect system based on Si/PLZT smart pixels,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 128–131.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Top view of a Si/PLZT S-SLM with four cells in a 2 × 2 array. (b) Cross section of one unit cell of a Si/PLZT S-SLM. A thin Si film with a driver circuit is bonded directly to bulk PLZT and flip-chip bonded to a Si wafer with detector and logic circuits.

Fig. 2
Fig. 2

Schematic illustration of processing steps involved in bonding thin Si wafers to bonded PLZT/sapphire substrates (DB1). A low-temperature processing (~ 850 °C compared with a typical value of 1050 °C) gate oxidation step is applied to fabricate transistor structures on the transferred Si film after bonding. PECVD, plasma-enhanced chemical vapor deposition.

Fig. 3
Fig. 3

Schematic illustration of processing steps involved in thinning, transferring, and bonding preprocessed Si device film onto a PLZT substrate (DB2). In this approach, any conventional Si processing step may be applied.

Fig. 4
Fig. 4

Photomicrograph of an NMOS transistor fabricated on Si film bonded onto a PLZT substrate with a 20-nm-thick Al2O3 buffer layer (DB1).

Fig. 5
Fig. 5

Typical I-V curves of a 10 μm × 20 μm gate NMOS transistor fabricated on bonded Si film (DB1).

Fig. 6
Fig. 6

Photomicrographs of an NMOS transistor (a) on host Si-on-Si substrate before and (b) on PLZT after the etch, transfer, or bond (DB2). A cross section of the bonded structure is also illustrated.

Fig. 7
Fig. 7

I-V curves of a transistor with 10-μm-width and 20-μm-length gate size before and after the application of the etch, transfer, and bond steps (DB2).

Fig. 8
Fig. 8

Inverter connection configurations and typical output traces for 0–5-V square-wave inputs of devices processed with DB2: (a) Actively loaded (enhancement load) inverter. The gate sizes of the corresponding transistors were L × W = 20 μm × 10 μm (for load transistor) and 20 μm × 40 μm (for inverting transistor). The output traces are that of a set of these transistors as processed on the SOI wafer (before) and after etch, transfer and bonding (after). (b) Externally loaded inverter. The output trace is that of a 20 μm × 40 μm gate transistor after etch, transfer, and bonding.

Fig. 9
Fig. 9

Performance of modulator that is connected electrically to a transistor on Si film bonded to a PLZT substrate with DB2 compared with that of a reference modulator structure consisting of electrically connected modulator windows of the same size that are photolithographically defined on a PLZT substrate with 1-μm-thick polyimide film. (a) Optical throughput of the modulator shown in Fig. 6(b) versus applied voltage, (b) corresponding contrast ratio versus applied voltage.

Fig. 10
Fig. 10

Throughput and contrast of the modulator shown in Fig. 6(b) as applied voltage is varied in the range 0–120 V.

Fig. 11
Fig. 11

Schematic illustration of a high-voltage (20-V) inverting circuit for driving PLZT modulators. w (which is width/length) represents the normalized gate widths of NMOS transistors.

Fig. 12
Fig. 12

spice simulation for the modulator driver circuit detailed in Fig. 8: (a) transient characteristics for 0–5-V square-wave input, (b) output voltage as a function of 0–5-V input variation.

Metrics