Abstract

We describe a technique for noncontact velocity measurement by using double-exposure speckle-pattern techniques with optical signal processing. The two speckle patterns are recorded on a ferroelectric liquid-crystal (FLC) spatial light modulator (SLM), which is a bistable optically addressed SLM, and the composite pattern is then analyzed by an optical system similar to a joint transform correlator, in which another FLC-SLM and a position-sensitive detector are used. We show that the performance of the system can be significantly improved by adjusting the time between exposures using a real-time feedback system that is based on the position of the correlation spot in the output plane.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Archbold, A. E. Ennos, “Displacement measurement from double exposure laser photography,” Opt. Acta 19, 253–271 (1972).
    [CrossRef]
  2. T. Asakura, N. Takai, “Dynamic laser speckles and their application to velocity measurement of the diffuse object,” Appl. Phys. 25, 179–194 (1981).
    [CrossRef]
  3. H. Ogiwara, H. Ukita, “A speckle pattern velocimeter using a periodical differential detector,” Jpn. J. Appl. Phys. 14, 307–310 (1975).
  4. D. Robinson, “Automatic fringe analysis with a computer image-processing system,” Appl. Opt. 22, 2169–2176 (1983).
    [CrossRef] [PubMed]
  5. R. Erbeck, “Fast image processing with a microcomputer applied to speckle photography,” Appl. Opt. 24, 3838–3841 (1985).
    [CrossRef] [PubMed]
  6. T. Rosegn, K. Wozniak, G. Wozniak, “Image processing for laser speckle velocimetry using the two-dimensional fast Fourier transform,” Appl. Opt. 29, 5298–5302 (1990).
    [CrossRef]
  7. N. Deng, I. Yamaguchi, “Automatic analysis of speckle photographs with extended range and Improved accuracy,” Appl. Opt. 29, 296–303 (1990).
    [CrossRef] [PubMed]
  8. J. M. Coupland, N. A. Hallwell, “Automated optical analysis of Young’s fringe-optical autocorrelation,” Opt. Lasers Eng. 14, 351–361 (1991).
    [CrossRef]
  9. J. Zhang, P. Sun, J. Chen, B. Ding, “Pointwise automatic analysis of speckle photographs,” Opt. Eng. 30, 382–385 (1991).
    [CrossRef]
  10. B. Bates, P. C. Miller, W. Luchuan, “Liquid-crystal television optical gates applied real-time speckle metrology,” J. Mod. Opt. 36, 317–322 (1989).
    [CrossRef]
  11. B. Bates, P. C. Miller, “Speckle metrology employing LCTV spatial light modulator,” Opt. Lasers Eng. 14, 341–349 (1991).
    [CrossRef]
  12. A. Ogiwara, H. Sasaki, J. Ohtubo, “Application of LCTV to nonlinear speckle correlator,” Opt. Commun. 86, 513–522 (1991).
    [CrossRef]
  13. T. Okamoto, Y. Egawa, T. Asakura, “Liquid crystal television applied to a speckle correlation method: real time measurement of the object displacement,” Opt. Commun. 88, 17–21 (1992).
    [CrossRef]
  14. G. Moddel, K. M. Johnson, W. Li, A. Rice, L. A. Pagano-Stauffer, M. A. Handschy, “High-speed binary optically addressed spatial light modulator,” Appl. Phys. Lett. 55, 537–539 (1989).
    [CrossRef]
  15. S. Fukushima, T. Kurokawa, S. Matsuo, H. Kozawaguchi, “Bistable spatial light modulator using a ferroelectric liquid crystal,” Opt. Lett. 15, 285–287 (1990).
    [CrossRef] [PubMed]
  16. S. Fukushima, T. Kurokawa, M. Ohno, “Ferroelectric liquid-crystal spatial light modulator achieving bipolar image operation and cascadability,” Appl. Opt. 31, 6859–6868 (1992).
    [CrossRef] [PubMed]
  17. D. Cunningham, J. Sharpe, K. M. Johnson, “Application of an optically addressed spatial light modulator to real-time speckle photography,” Opt. Commun. 101, 311–316 (1993).
    [CrossRef]
  18. Y. Kobayashi, T. Takemori, N. Mukohzaka, N. Yoshida, T. Hori, S. Fukushima, “Displacement meter with FLC-SLM utilizing speckle photography,” in International Symposium on Optical Fabrication, Testing, and Surface Evaluation, J. Tsujiuchi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1720, 574–580(1992).
  19. F. T. S. Yu, K. Pan, C. Uang, P. B. Ruffin, “Fiber speckelgram sensing by means of an adaptive joint transform correlator,” Opt. Eng. 32, 2884–2889 (1993).
    [CrossRef]
  20. Hamamatsu tech. data, position sensor C2399 series (Hamamatsu, Hamamatsu, Japan, 1989).
  21. Hamamatsu tech. data, position-sensitive photomultiplier tube with crossed wire anodes R2487 series (Hamamatsu, Hamamatsu, Japan, 1989).
  22. C. S. Weaver, J. W. Goodman, “Technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966).
    [CrossRef] [PubMed]
  23. A. Ogiwara, H. Sakai, J. Ohtsubo, “Real-time optical correlator for doubly exposed clipped speckle,” Opt. Commun. 78, 213–216 (1990).
    [CrossRef]
  24. A. Ogiwara, H. Sakai, J. Ohtsubo, “Real-time optical joint transform correlator for velocity measurement using clipped speckle intensity,” Opt. Commun. 78, 322–326 (1990).
    [CrossRef]
  25. N. A. Clark, S. G. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystal,” Appl. Phys. Lett. 36, 899–901 (1980).
    [CrossRef]
  26. R. Meynart, “Instantaneous velocity field measurements in unsteady gas flow by speckle velocimetry,” Appl. Opt. 22, 535–540 (1983).
    [CrossRef] [PubMed]
  27. M. P. Wernet, R. V. Edwards, “Real time optical correlator using a magnetooptic device applied for particle imaging velocimetry,” Appl. Opt. 27, 813–815 (1988).
    [CrossRef] [PubMed]
  28. J. P. Sharpe, K. M. Johnson, “Particle image velocimetry fringe processing using an optically addressed spatial light modulator,” Appl. Opt. 31, 7399–7402 (1992).
    [CrossRef] [PubMed]
  29. X. Lin, J. Ohtsubo, T. Tamiki, “Generation of a joint pattern for optical speckle JTC by using a liquid crystal cell and a birefringent plate,” Opt. Commun. 98, 41–46 (1993).
    [CrossRef]

1993 (3)

D. Cunningham, J. Sharpe, K. M. Johnson, “Application of an optically addressed spatial light modulator to real-time speckle photography,” Opt. Commun. 101, 311–316 (1993).
[CrossRef]

F. T. S. Yu, K. Pan, C. Uang, P. B. Ruffin, “Fiber speckelgram sensing by means of an adaptive joint transform correlator,” Opt. Eng. 32, 2884–2889 (1993).
[CrossRef]

X. Lin, J. Ohtsubo, T. Tamiki, “Generation of a joint pattern for optical speckle JTC by using a liquid crystal cell and a birefringent plate,” Opt. Commun. 98, 41–46 (1993).
[CrossRef]

1992 (3)

1991 (4)

B. Bates, P. C. Miller, “Speckle metrology employing LCTV spatial light modulator,” Opt. Lasers Eng. 14, 341–349 (1991).
[CrossRef]

A. Ogiwara, H. Sasaki, J. Ohtubo, “Application of LCTV to nonlinear speckle correlator,” Opt. Commun. 86, 513–522 (1991).
[CrossRef]

J. M. Coupland, N. A. Hallwell, “Automated optical analysis of Young’s fringe-optical autocorrelation,” Opt. Lasers Eng. 14, 351–361 (1991).
[CrossRef]

J. Zhang, P. Sun, J. Chen, B. Ding, “Pointwise automatic analysis of speckle photographs,” Opt. Eng. 30, 382–385 (1991).
[CrossRef]

1990 (5)

1989 (2)

G. Moddel, K. M. Johnson, W. Li, A. Rice, L. A. Pagano-Stauffer, M. A. Handschy, “High-speed binary optically addressed spatial light modulator,” Appl. Phys. Lett. 55, 537–539 (1989).
[CrossRef]

B. Bates, P. C. Miller, W. Luchuan, “Liquid-crystal television optical gates applied real-time speckle metrology,” J. Mod. Opt. 36, 317–322 (1989).
[CrossRef]

1988 (1)

1985 (1)

1983 (2)

1981 (1)

T. Asakura, N. Takai, “Dynamic laser speckles and their application to velocity measurement of the diffuse object,” Appl. Phys. 25, 179–194 (1981).
[CrossRef]

1980 (1)

N. A. Clark, S. G. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystal,” Appl. Phys. Lett. 36, 899–901 (1980).
[CrossRef]

1975 (1)

H. Ogiwara, H. Ukita, “A speckle pattern velocimeter using a periodical differential detector,” Jpn. J. Appl. Phys. 14, 307–310 (1975).

1972 (1)

E. Archbold, A. E. Ennos, “Displacement measurement from double exposure laser photography,” Opt. Acta 19, 253–271 (1972).
[CrossRef]

1966 (1)

Archbold, E.

E. Archbold, A. E. Ennos, “Displacement measurement from double exposure laser photography,” Opt. Acta 19, 253–271 (1972).
[CrossRef]

Asakura, T.

T. Okamoto, Y. Egawa, T. Asakura, “Liquid crystal television applied to a speckle correlation method: real time measurement of the object displacement,” Opt. Commun. 88, 17–21 (1992).
[CrossRef]

T. Asakura, N. Takai, “Dynamic laser speckles and their application to velocity measurement of the diffuse object,” Appl. Phys. 25, 179–194 (1981).
[CrossRef]

Bates, B.

B. Bates, P. C. Miller, “Speckle metrology employing LCTV spatial light modulator,” Opt. Lasers Eng. 14, 341–349 (1991).
[CrossRef]

B. Bates, P. C. Miller, W. Luchuan, “Liquid-crystal television optical gates applied real-time speckle metrology,” J. Mod. Opt. 36, 317–322 (1989).
[CrossRef]

Chen, J.

J. Zhang, P. Sun, J. Chen, B. Ding, “Pointwise automatic analysis of speckle photographs,” Opt. Eng. 30, 382–385 (1991).
[CrossRef]

Clark, N. A.

N. A. Clark, S. G. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystal,” Appl. Phys. Lett. 36, 899–901 (1980).
[CrossRef]

Coupland, J. M.

J. M. Coupland, N. A. Hallwell, “Automated optical analysis of Young’s fringe-optical autocorrelation,” Opt. Lasers Eng. 14, 351–361 (1991).
[CrossRef]

Cunningham, D.

D. Cunningham, J. Sharpe, K. M. Johnson, “Application of an optically addressed spatial light modulator to real-time speckle photography,” Opt. Commun. 101, 311–316 (1993).
[CrossRef]

Deng, N.

Ding, B.

J. Zhang, P. Sun, J. Chen, B. Ding, “Pointwise automatic analysis of speckle photographs,” Opt. Eng. 30, 382–385 (1991).
[CrossRef]

Edwards, R. V.

Egawa, Y.

T. Okamoto, Y. Egawa, T. Asakura, “Liquid crystal television applied to a speckle correlation method: real time measurement of the object displacement,” Opt. Commun. 88, 17–21 (1992).
[CrossRef]

Ennos, A. E.

E. Archbold, A. E. Ennos, “Displacement measurement from double exposure laser photography,” Opt. Acta 19, 253–271 (1972).
[CrossRef]

Erbeck, R.

Fukushima, S.

S. Fukushima, T. Kurokawa, M. Ohno, “Ferroelectric liquid-crystal spatial light modulator achieving bipolar image operation and cascadability,” Appl. Opt. 31, 6859–6868 (1992).
[CrossRef] [PubMed]

S. Fukushima, T. Kurokawa, S. Matsuo, H. Kozawaguchi, “Bistable spatial light modulator using a ferroelectric liquid crystal,” Opt. Lett. 15, 285–287 (1990).
[CrossRef] [PubMed]

Y. Kobayashi, T. Takemori, N. Mukohzaka, N. Yoshida, T. Hori, S. Fukushima, “Displacement meter with FLC-SLM utilizing speckle photography,” in International Symposium on Optical Fabrication, Testing, and Surface Evaluation, J. Tsujiuchi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1720, 574–580(1992).

Goodman, J. W.

Hallwell, N. A.

J. M. Coupland, N. A. Hallwell, “Automated optical analysis of Young’s fringe-optical autocorrelation,” Opt. Lasers Eng. 14, 351–361 (1991).
[CrossRef]

Handschy, M. A.

G. Moddel, K. M. Johnson, W. Li, A. Rice, L. A. Pagano-Stauffer, M. A. Handschy, “High-speed binary optically addressed spatial light modulator,” Appl. Phys. Lett. 55, 537–539 (1989).
[CrossRef]

Hori, T.

Y. Kobayashi, T. Takemori, N. Mukohzaka, N. Yoshida, T. Hori, S. Fukushima, “Displacement meter with FLC-SLM utilizing speckle photography,” in International Symposium on Optical Fabrication, Testing, and Surface Evaluation, J. Tsujiuchi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1720, 574–580(1992).

Johnson, K. M.

D. Cunningham, J. Sharpe, K. M. Johnson, “Application of an optically addressed spatial light modulator to real-time speckle photography,” Opt. Commun. 101, 311–316 (1993).
[CrossRef]

J. P. Sharpe, K. M. Johnson, “Particle image velocimetry fringe processing using an optically addressed spatial light modulator,” Appl. Opt. 31, 7399–7402 (1992).
[CrossRef] [PubMed]

G. Moddel, K. M. Johnson, W. Li, A. Rice, L. A. Pagano-Stauffer, M. A. Handschy, “High-speed binary optically addressed spatial light modulator,” Appl. Phys. Lett. 55, 537–539 (1989).
[CrossRef]

Kobayashi, Y.

Y. Kobayashi, T. Takemori, N. Mukohzaka, N. Yoshida, T. Hori, S. Fukushima, “Displacement meter with FLC-SLM utilizing speckle photography,” in International Symposium on Optical Fabrication, Testing, and Surface Evaluation, J. Tsujiuchi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1720, 574–580(1992).

Kozawaguchi, H.

Kurokawa, T.

Lagerwall, S. G.

N. A. Clark, S. G. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystal,” Appl. Phys. Lett. 36, 899–901 (1980).
[CrossRef]

Li, W.

G. Moddel, K. M. Johnson, W. Li, A. Rice, L. A. Pagano-Stauffer, M. A. Handschy, “High-speed binary optically addressed spatial light modulator,” Appl. Phys. Lett. 55, 537–539 (1989).
[CrossRef]

Lin, X.

X. Lin, J. Ohtsubo, T. Tamiki, “Generation of a joint pattern for optical speckle JTC by using a liquid crystal cell and a birefringent plate,” Opt. Commun. 98, 41–46 (1993).
[CrossRef]

Luchuan, W.

B. Bates, P. C. Miller, W. Luchuan, “Liquid-crystal television optical gates applied real-time speckle metrology,” J. Mod. Opt. 36, 317–322 (1989).
[CrossRef]

Matsuo, S.

Meynart, R.

Miller, P. C.

B. Bates, P. C. Miller, “Speckle metrology employing LCTV spatial light modulator,” Opt. Lasers Eng. 14, 341–349 (1991).
[CrossRef]

B. Bates, P. C. Miller, W. Luchuan, “Liquid-crystal television optical gates applied real-time speckle metrology,” J. Mod. Opt. 36, 317–322 (1989).
[CrossRef]

Moddel, G.

G. Moddel, K. M. Johnson, W. Li, A. Rice, L. A. Pagano-Stauffer, M. A. Handschy, “High-speed binary optically addressed spatial light modulator,” Appl. Phys. Lett. 55, 537–539 (1989).
[CrossRef]

Mukohzaka, N.

Y. Kobayashi, T. Takemori, N. Mukohzaka, N. Yoshida, T. Hori, S. Fukushima, “Displacement meter with FLC-SLM utilizing speckle photography,” in International Symposium on Optical Fabrication, Testing, and Surface Evaluation, J. Tsujiuchi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1720, 574–580(1992).

Ogiwara, A.

A. Ogiwara, H. Sasaki, J. Ohtubo, “Application of LCTV to nonlinear speckle correlator,” Opt. Commun. 86, 513–522 (1991).
[CrossRef]

A. Ogiwara, H. Sakai, J. Ohtsubo, “Real-time optical joint transform correlator for velocity measurement using clipped speckle intensity,” Opt. Commun. 78, 322–326 (1990).
[CrossRef]

A. Ogiwara, H. Sakai, J. Ohtsubo, “Real-time optical correlator for doubly exposed clipped speckle,” Opt. Commun. 78, 213–216 (1990).
[CrossRef]

Ogiwara, H.

H. Ogiwara, H. Ukita, “A speckle pattern velocimeter using a periodical differential detector,” Jpn. J. Appl. Phys. 14, 307–310 (1975).

Ohno, M.

Ohtsubo, J.

X. Lin, J. Ohtsubo, T. Tamiki, “Generation of a joint pattern for optical speckle JTC by using a liquid crystal cell and a birefringent plate,” Opt. Commun. 98, 41–46 (1993).
[CrossRef]

A. Ogiwara, H. Sakai, J. Ohtsubo, “Real-time optical correlator for doubly exposed clipped speckle,” Opt. Commun. 78, 213–216 (1990).
[CrossRef]

A. Ogiwara, H. Sakai, J. Ohtsubo, “Real-time optical joint transform correlator for velocity measurement using clipped speckle intensity,” Opt. Commun. 78, 322–326 (1990).
[CrossRef]

Ohtubo, J.

A. Ogiwara, H. Sasaki, J. Ohtubo, “Application of LCTV to nonlinear speckle correlator,” Opt. Commun. 86, 513–522 (1991).
[CrossRef]

Okamoto, T.

T. Okamoto, Y. Egawa, T. Asakura, “Liquid crystal television applied to a speckle correlation method: real time measurement of the object displacement,” Opt. Commun. 88, 17–21 (1992).
[CrossRef]

Pagano-Stauffer, L. A.

G. Moddel, K. M. Johnson, W. Li, A. Rice, L. A. Pagano-Stauffer, M. A. Handschy, “High-speed binary optically addressed spatial light modulator,” Appl. Phys. Lett. 55, 537–539 (1989).
[CrossRef]

Pan, K.

F. T. S. Yu, K. Pan, C. Uang, P. B. Ruffin, “Fiber speckelgram sensing by means of an adaptive joint transform correlator,” Opt. Eng. 32, 2884–2889 (1993).
[CrossRef]

Rice, A.

G. Moddel, K. M. Johnson, W. Li, A. Rice, L. A. Pagano-Stauffer, M. A. Handschy, “High-speed binary optically addressed spatial light modulator,” Appl. Phys. Lett. 55, 537–539 (1989).
[CrossRef]

Robinson, D.

Rosegn, T.

Ruffin, P. B.

F. T. S. Yu, K. Pan, C. Uang, P. B. Ruffin, “Fiber speckelgram sensing by means of an adaptive joint transform correlator,” Opt. Eng. 32, 2884–2889 (1993).
[CrossRef]

Sakai, H.

A. Ogiwara, H. Sakai, J. Ohtsubo, “Real-time optical correlator for doubly exposed clipped speckle,” Opt. Commun. 78, 213–216 (1990).
[CrossRef]

A. Ogiwara, H. Sakai, J. Ohtsubo, “Real-time optical joint transform correlator for velocity measurement using clipped speckle intensity,” Opt. Commun. 78, 322–326 (1990).
[CrossRef]

Sasaki, H.

A. Ogiwara, H. Sasaki, J. Ohtubo, “Application of LCTV to nonlinear speckle correlator,” Opt. Commun. 86, 513–522 (1991).
[CrossRef]

Sharpe, J.

D. Cunningham, J. Sharpe, K. M. Johnson, “Application of an optically addressed spatial light modulator to real-time speckle photography,” Opt. Commun. 101, 311–316 (1993).
[CrossRef]

Sharpe, J. P.

Sun, P.

J. Zhang, P. Sun, J. Chen, B. Ding, “Pointwise automatic analysis of speckle photographs,” Opt. Eng. 30, 382–385 (1991).
[CrossRef]

Takai, N.

T. Asakura, N. Takai, “Dynamic laser speckles and their application to velocity measurement of the diffuse object,” Appl. Phys. 25, 179–194 (1981).
[CrossRef]

Takemori, T.

Y. Kobayashi, T. Takemori, N. Mukohzaka, N. Yoshida, T. Hori, S. Fukushima, “Displacement meter with FLC-SLM utilizing speckle photography,” in International Symposium on Optical Fabrication, Testing, and Surface Evaluation, J. Tsujiuchi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1720, 574–580(1992).

Tamiki, T.

X. Lin, J. Ohtsubo, T. Tamiki, “Generation of a joint pattern for optical speckle JTC by using a liquid crystal cell and a birefringent plate,” Opt. Commun. 98, 41–46 (1993).
[CrossRef]

Uang, C.

F. T. S. Yu, K. Pan, C. Uang, P. B. Ruffin, “Fiber speckelgram sensing by means of an adaptive joint transform correlator,” Opt. Eng. 32, 2884–2889 (1993).
[CrossRef]

Ukita, H.

H. Ogiwara, H. Ukita, “A speckle pattern velocimeter using a periodical differential detector,” Jpn. J. Appl. Phys. 14, 307–310 (1975).

Weaver, C. S.

Wernet, M. P.

Wozniak, G.

Wozniak, K.

Yamaguchi, I.

Yoshida, N.

Y. Kobayashi, T. Takemori, N. Mukohzaka, N. Yoshida, T. Hori, S. Fukushima, “Displacement meter with FLC-SLM utilizing speckle photography,” in International Symposium on Optical Fabrication, Testing, and Surface Evaluation, J. Tsujiuchi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1720, 574–580(1992).

Yu, F. T. S.

F. T. S. Yu, K. Pan, C. Uang, P. B. Ruffin, “Fiber speckelgram sensing by means of an adaptive joint transform correlator,” Opt. Eng. 32, 2884–2889 (1993).
[CrossRef]

Zhang, J.

J. Zhang, P. Sun, J. Chen, B. Ding, “Pointwise automatic analysis of speckle photographs,” Opt. Eng. 30, 382–385 (1991).
[CrossRef]

Appl. Opt. (9)

R. Meynart, “Instantaneous velocity field measurements in unsteady gas flow by speckle velocimetry,” Appl. Opt. 22, 535–540 (1983).
[CrossRef] [PubMed]

D. Robinson, “Automatic fringe analysis with a computer image-processing system,” Appl. Opt. 22, 2169–2176 (1983).
[CrossRef] [PubMed]

R. Erbeck, “Fast image processing with a microcomputer applied to speckle photography,” Appl. Opt. 24, 3838–3841 (1985).
[CrossRef] [PubMed]

N. Deng, I. Yamaguchi, “Automatic analysis of speckle photographs with extended range and Improved accuracy,” Appl. Opt. 29, 296–303 (1990).
[CrossRef] [PubMed]

T. Rosegn, K. Wozniak, G. Wozniak, “Image processing for laser speckle velocimetry using the two-dimensional fast Fourier transform,” Appl. Opt. 29, 5298–5302 (1990).
[CrossRef]

S. Fukushima, T. Kurokawa, M. Ohno, “Ferroelectric liquid-crystal spatial light modulator achieving bipolar image operation and cascadability,” Appl. Opt. 31, 6859–6868 (1992).
[CrossRef] [PubMed]

M. P. Wernet, R. V. Edwards, “Real time optical correlator using a magnetooptic device applied for particle imaging velocimetry,” Appl. Opt. 27, 813–815 (1988).
[CrossRef] [PubMed]

J. P. Sharpe, K. M. Johnson, “Particle image velocimetry fringe processing using an optically addressed spatial light modulator,” Appl. Opt. 31, 7399–7402 (1992).
[CrossRef] [PubMed]

C. S. Weaver, J. W. Goodman, “Technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966).
[CrossRef] [PubMed]

Appl. Phys. (1)

T. Asakura, N. Takai, “Dynamic laser speckles and their application to velocity measurement of the diffuse object,” Appl. Phys. 25, 179–194 (1981).
[CrossRef]

Appl. Phys. Lett. (2)

G. Moddel, K. M. Johnson, W. Li, A. Rice, L. A. Pagano-Stauffer, M. A. Handschy, “High-speed binary optically addressed spatial light modulator,” Appl. Phys. Lett. 55, 537–539 (1989).
[CrossRef]

N. A. Clark, S. G. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystal,” Appl. Phys. Lett. 36, 899–901 (1980).
[CrossRef]

J. Mod. Opt. (1)

B. Bates, P. C. Miller, W. Luchuan, “Liquid-crystal television optical gates applied real-time speckle metrology,” J. Mod. Opt. 36, 317–322 (1989).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Ogiwara, H. Ukita, “A speckle pattern velocimeter using a periodical differential detector,” Jpn. J. Appl. Phys. 14, 307–310 (1975).

Opt. Acta (1)

E. Archbold, A. E. Ennos, “Displacement measurement from double exposure laser photography,” Opt. Acta 19, 253–271 (1972).
[CrossRef]

Opt. Commun. (6)

A. Ogiwara, H. Sasaki, J. Ohtubo, “Application of LCTV to nonlinear speckle correlator,” Opt. Commun. 86, 513–522 (1991).
[CrossRef]

T. Okamoto, Y. Egawa, T. Asakura, “Liquid crystal television applied to a speckle correlation method: real time measurement of the object displacement,” Opt. Commun. 88, 17–21 (1992).
[CrossRef]

D. Cunningham, J. Sharpe, K. M. Johnson, “Application of an optically addressed spatial light modulator to real-time speckle photography,” Opt. Commun. 101, 311–316 (1993).
[CrossRef]

A. Ogiwara, H. Sakai, J. Ohtsubo, “Real-time optical correlator for doubly exposed clipped speckle,” Opt. Commun. 78, 213–216 (1990).
[CrossRef]

A. Ogiwara, H. Sakai, J. Ohtsubo, “Real-time optical joint transform correlator for velocity measurement using clipped speckle intensity,” Opt. Commun. 78, 322–326 (1990).
[CrossRef]

X. Lin, J. Ohtsubo, T. Tamiki, “Generation of a joint pattern for optical speckle JTC by using a liquid crystal cell and a birefringent plate,” Opt. Commun. 98, 41–46 (1993).
[CrossRef]

Opt. Eng. (2)

F. T. S. Yu, K. Pan, C. Uang, P. B. Ruffin, “Fiber speckelgram sensing by means of an adaptive joint transform correlator,” Opt. Eng. 32, 2884–2889 (1993).
[CrossRef]

J. Zhang, P. Sun, J. Chen, B. Ding, “Pointwise automatic analysis of speckle photographs,” Opt. Eng. 30, 382–385 (1991).
[CrossRef]

Opt. Lasers Eng. (2)

J. M. Coupland, N. A. Hallwell, “Automated optical analysis of Young’s fringe-optical autocorrelation,” Opt. Lasers Eng. 14, 351–361 (1991).
[CrossRef]

B. Bates, P. C. Miller, “Speckle metrology employing LCTV spatial light modulator,” Opt. Lasers Eng. 14, 341–349 (1991).
[CrossRef]

Opt. Lett. (1)

Other (3)

Hamamatsu tech. data, position sensor C2399 series (Hamamatsu, Hamamatsu, Japan, 1989).

Hamamatsu tech. data, position-sensitive photomultiplier tube with crossed wire anodes R2487 series (Hamamatsu, Hamamatsu, Japan, 1989).

Y. Kobayashi, T. Takemori, N. Mukohzaka, N. Yoshida, T. Hori, S. Fukushima, “Displacement meter with FLC-SLM utilizing speckle photography,” in International Symposium on Optical Fabrication, Testing, and Surface Evaluation, J. Tsujiuchi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1720, 574–580(1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Principle of operation. S’s, shutters; L’s, lenses.

Fig. 2
Fig. 2

Structure of the FLC-SLM. AR, antireflection.

Fig. 3
Fig. 3

Images obtained with the FLC-SLM.

Fig. 4
Fig. 4

FLC-SLM.

Fig. 5
Fig. 5

Time response of the FLC-SLM.

Fig. 6
Fig. 6

Transfer characteristics of the FLC-SLM.

Fig. 7
Fig. 7

Setup used to measure different efficiencies of gratings written on the FLC-SLM. ND, neutral-density filter.

Fig. 8
Fig. 8

Diffraction efficiency as a function of spatial frequency. lp, line pairs.

Fig. 9
Fig. 9

Experimental displacement measurement system. Ti is the time separation between speckle-pattern acquisitions. PS-PMT, position-sensitive photomultiplier tube; S.F.’s, spatial filters; AOD’s, acousto-optic devices; TRG, trigger; A/D, analog to digital; D/A, digital to analog.

Fig. 10
Fig. 10

Object velocity profile used during the measurement runs.

Fig. 11
Fig. 11

Operation sequence of the system.

Fig. 12
Fig. 12

Location of the PSD sensitive area with respect to the correlator output peaks.

Fig. 13
Fig. 13

Joint transform plane intensity distributions: (a) v = 200 mm/s, Ti = 1.0 ms; (b) v = 400 mm/s, Ti = 1.0 ms; (c) v = 400 mm/s, Ti = 0.5 ms.

Fig. 14
Fig. 14

Output peak position as measured by the PSD for three experimetnal runs with the same maximum stage velocity (v = 350 mm/s) and different accelerations and decelerations (a = a′ = 980, 1960, and 2940 mm/s2).

Fig. 15
Fig. 15

Demonstration of system linearity.

Fig. 16
Fig. 16

Effect of feedback control of double-exposure time interval.

Tables (1)

Tables Icon

Table 1 FLC-SLM Characteristics

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( u ) = | F ( u ) + F ( u ) exp ( j 2 π Δ x u λ f 1 ) | 2 ,
I ( u ) = 2 F ( u ) 2 + F ( u ) F ( u ) * exp ( - j 2 π Δ x u λ f 1 ) + F ( u ) * F ( u ) exp ( j 2 π Δ x u λ f 1 ) = 2 F ( u ) 2 [ 1 + cos ( 2 π Δ x u λ f 1 ) ] ,
2 f ( x ) f ( x ) + f [ x - ( f 2 / f 1 ) Δ x ] f ( x ) + f [ x + ( f 2 / f 1 ) Δ x ] f ( x ) ,

Metrics