Abstract

A 256 × 256 pixel spatial light modulator (SLM) is designed and constructed by the use of liquid-crystal-on-silicon technology. The device is a binary electrically addressed SLM with a measured zero-order contrast ratio of 70:1 and an imaged contrast ratio of 10:1. The pixel pitch is 21.6 μm, which gives an array size of 5.53 mm. The electronic load time is 43 μs, and the 10%–90% switching time of the liquid crystal is ~ 75–80 μs at room temperature, which implies a maximum frame rate of ~ 8.3 kHz. We discuss the design trade-offs that are intrinsic to this type of device and describe how the primary application for the device in an optical correlator influenced the final design.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Warde, A. D. Fisher, “Spatial light modulators: applications and functional capabilities,” in Optical Signal Processing, J. Horner, ed. (Academic, San Diego, Calif., 1987), pp. 477–523.
  2. See, for example, K. M. Johnson, D. J. McKnight, I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
    [CrossRef]
  3. I. Underwood, D. G. Vass, R. M. Sillitto, “Evaluation of an nMOS VLSI array for an adaptive liquid-crystal spatial light modulator,” Proc. Inst. Electr. Eng. 133, 77–82 (1986).
  4. D. J. McKnight, D. G. Vass, R. M. Sillitto, “Development of a spatial light modulator: a randomly addressed liquid crystal over nMOS array,” Appl. Opt. 28, 4757–4762 (1989).
    [CrossRef] [PubMed]
  5. D. A. Jared, R. Turner, K. M. Johnson, “Electrically addressed spatial light modulator that uses a dynamic memory,” Opt. Lett. 16, 1785–1787 (1991).
    [CrossRef] [PubMed]
  6. N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28, 4740–4747 (1989).
    [CrossRef] [PubMed]
  7. M. Handschy, L. K. Cotter, J. D. Cunningham, T. Drabik, S. D. Gaalema, “One-transistor DRAM FLC/VLSI SLM,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 14–17.
  8. R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1978), p. 101–104.
  9. B. D. Bock, T. A. Crow, M. K. Giles, “Design considerations for miniature optical correlation systems that use pixellated input and filter transducers,” in Optical Information-Processing Systems and Architectures II, B. Javidi, ed., Proc. Soc. Photo. Instrum. Eng.1347, 297–309 (1990).
  10. S. A. Serati, T. K. Ewing, R. A. Serati, K. M. Johnson, D. M. Simon, “Programmable 128 by 128 ferroelectric liquid crystal spatial light modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1959, 55–68 (1993).
  11. British Drug House mixtures are available from Merck Ltd., Westquay Road, Poole BH15 1HX, UK.
  12. M. A. Handschy, K. M. Johnson, G. Moddel, “Electro-optic applications of ferroelectric liquid crystals to optical computing,” Ferroelectrics 85, 279–289 (1988).
    [CrossRef]
  13. I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, S. G. Latham, “A high performance spatial light modulator,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 107–115 (1991).
  14. S. A. Serati, Boulder Nonlinear Systems Inc., 1898 Flatiron Court, Boulder, Colo. 80301 (personal communication, 1993).
  15. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2394 (1987).
    [CrossRef] [PubMed]
  16. M. S. McKeekin, W. T. Rhodes, “Texture segmentation by threshold decomposition fitering,” in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 132.

1993 (1)

See, for example, K. M. Johnson, D. J. McKnight, I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
[CrossRef]

1991 (1)

1989 (2)

1988 (1)

M. A. Handschy, K. M. Johnson, G. Moddel, “Electro-optic applications of ferroelectric liquid crystals to optical computing,” Ferroelectrics 85, 279–289 (1988).
[CrossRef]

1987 (1)

1986 (1)

I. Underwood, D. G. Vass, R. M. Sillitto, “Evaluation of an nMOS VLSI array for an adaptive liquid-crystal spatial light modulator,” Proc. Inst. Electr. Eng. 133, 77–82 (1986).

Al Chalabi, A. O.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, S. G. Latham, “A high performance spatial light modulator,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 107–115 (1991).

Ayliffe, P. J.

Birch, M. J.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, S. G. Latham, “A high performance spatial light modulator,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 107–115 (1991).

Bock, B. D.

B. D. Bock, T. A. Crow, M. K. Giles, “Design considerations for miniature optical correlation systems that use pixellated input and filter transducers,” in Optical Information-Processing Systems and Architectures II, B. Javidi, ed., Proc. Soc. Photo. Instrum. Eng.1347, 297–309 (1990).

Bracewell, R.

R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1978), p. 101–104.

Bradford, G.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, S. G. Latham, “A high performance spatial light modulator,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 107–115 (1991).

Collings, N.

Cotter, L. K.

M. Handschy, L. K. Cotter, J. D. Cunningham, T. Drabik, S. D. Gaalema, “One-transistor DRAM FLC/VLSI SLM,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 14–17.

Crossland, W. A.

N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28, 4740–4747 (1989).
[CrossRef] [PubMed]

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, S. G. Latham, “A high performance spatial light modulator,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 107–115 (1991).

Crow, T. A.

B. D. Bock, T. A. Crow, M. K. Giles, “Design considerations for miniature optical correlation systems that use pixellated input and filter transducers,” in Optical Information-Processing Systems and Architectures II, B. Javidi, ed., Proc. Soc. Photo. Instrum. Eng.1347, 297–309 (1990).

Cunningham, J. D.

M. Handschy, L. K. Cotter, J. D. Cunningham, T. Drabik, S. D. Gaalema, “One-transistor DRAM FLC/VLSI SLM,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 14–17.

Drabik, T.

M. Handschy, L. K. Cotter, J. D. Cunningham, T. Drabik, S. D. Gaalema, “One-transistor DRAM FLC/VLSI SLM,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 14–17.

Ewing, T. K.

S. A. Serati, T. K. Ewing, R. A. Serati, K. M. Johnson, D. M. Simon, “Programmable 128 by 128 ferroelectric liquid crystal spatial light modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1959, 55–68 (1993).

Fancey, N. E.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, S. G. Latham, “A high performance spatial light modulator,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 107–115 (1991).

Field, D. J.

Fisher, A. D.

C. Warde, A. D. Fisher, “Spatial light modulators: applications and functional capabilities,” in Optical Signal Processing, J. Horner, ed. (Academic, San Diego, Calif., 1987), pp. 477–523.

Gaalema, S. D.

M. Handschy, L. K. Cotter, J. D. Cunningham, T. Drabik, S. D. Gaalema, “One-transistor DRAM FLC/VLSI SLM,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 14–17.

Giles, M. K.

B. D. Bock, T. A. Crow, M. K. Giles, “Design considerations for miniature optical correlation systems that use pixellated input and filter transducers,” in Optical Information-Processing Systems and Architectures II, B. Javidi, ed., Proc. Soc. Photo. Instrum. Eng.1347, 297–309 (1990).

Handschy, M.

M. Handschy, L. K. Cotter, J. D. Cunningham, T. Drabik, S. D. Gaalema, “One-transistor DRAM FLC/VLSI SLM,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 14–17.

Handschy, M. A.

M. A. Handschy, K. M. Johnson, G. Moddel, “Electro-optic applications of ferroelectric liquid crystals to optical computing,” Ferroelectrics 85, 279–289 (1988).
[CrossRef]

Jared, D. A.

Johnson, K. M.

See, for example, K. M. Johnson, D. J. McKnight, I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
[CrossRef]

D. A. Jared, R. Turner, K. M. Johnson, “Electrically addressed spatial light modulator that uses a dynamic memory,” Opt. Lett. 16, 1785–1787 (1991).
[CrossRef] [PubMed]

M. A. Handschy, K. M. Johnson, G. Moddel, “Electro-optic applications of ferroelectric liquid crystals to optical computing,” Ferroelectrics 85, 279–289 (1988).
[CrossRef]

S. A. Serati, T. K. Ewing, R. A. Serati, K. M. Johnson, D. M. Simon, “Programmable 128 by 128 ferroelectric liquid crystal spatial light modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1959, 55–68 (1993).

Latham, S. G.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, S. G. Latham, “A high performance spatial light modulator,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 107–115 (1991).

McKeekin, M. S.

M. S. McKeekin, W. T. Rhodes, “Texture segmentation by threshold decomposition fitering,” in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 132.

McKnight, D. J.

See, for example, K. M. Johnson, D. J. McKnight, I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
[CrossRef]

D. J. McKnight, D. G. Vass, R. M. Sillitto, “Development of a spatial light modulator: a randomly addressed liquid crystal over nMOS array,” Appl. Opt. 28, 4757–4762 (1989).
[CrossRef] [PubMed]

Moddel, G.

M. A. Handschy, K. M. Johnson, G. Moddel, “Electro-optic applications of ferroelectric liquid crystals to optical computing,” Ferroelectrics 85, 279–289 (1988).
[CrossRef]

Rhodes, W. T.

M. S. McKeekin, W. T. Rhodes, “Texture segmentation by threshold decomposition fitering,” in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 132.

Serati, R. A.

S. A. Serati, T. K. Ewing, R. A. Serati, K. M. Johnson, D. M. Simon, “Programmable 128 by 128 ferroelectric liquid crystal spatial light modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1959, 55–68 (1993).

Serati, S. A.

S. A. Serati, T. K. Ewing, R. A. Serati, K. M. Johnson, D. M. Simon, “Programmable 128 by 128 ferroelectric liquid crystal spatial light modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1959, 55–68 (1993).

S. A. Serati, Boulder Nonlinear Systems Inc., 1898 Flatiron Court, Boulder, Colo. 80301 (personal communication, 1993).

Sillitto, R. M.

D. J. McKnight, D. G. Vass, R. M. Sillitto, “Development of a spatial light modulator: a randomly addressed liquid crystal over nMOS array,” Appl. Opt. 28, 4757–4762 (1989).
[CrossRef] [PubMed]

I. Underwood, D. G. Vass, R. M. Sillitto, “Evaluation of an nMOS VLSI array for an adaptive liquid-crystal spatial light modulator,” Proc. Inst. Electr. Eng. 133, 77–82 (1986).

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, S. G. Latham, “A high performance spatial light modulator,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 107–115 (1991).

Simon, D. M.

S. A. Serati, T. K. Ewing, R. A. Serati, K. M. Johnson, D. M. Simon, “Programmable 128 by 128 ferroelectric liquid crystal spatial light modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1959, 55–68 (1993).

Sparks, A. P.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, S. G. Latham, “A high performance spatial light modulator,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 107–115 (1991).

Turner, R.

Underwood, I.

See, for example, K. M. Johnson, D. J. McKnight, I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
[CrossRef]

N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28, 4740–4747 (1989).
[CrossRef] [PubMed]

I. Underwood, D. G. Vass, R. M. Sillitto, “Evaluation of an nMOS VLSI array for an adaptive liquid-crystal spatial light modulator,” Proc. Inst. Electr. Eng. 133, 77–82 (1986).

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, S. G. Latham, “A high performance spatial light modulator,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 107–115 (1991).

Vass, D. G.

N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28, 4740–4747 (1989).
[CrossRef] [PubMed]

D. J. McKnight, D. G. Vass, R. M. Sillitto, “Development of a spatial light modulator: a randomly addressed liquid crystal over nMOS array,” Appl. Opt. 28, 4757–4762 (1989).
[CrossRef] [PubMed]

I. Underwood, D. G. Vass, R. M. Sillitto, “Evaluation of an nMOS VLSI array for an adaptive liquid-crystal spatial light modulator,” Proc. Inst. Electr. Eng. 133, 77–82 (1986).

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, S. G. Latham, “A high performance spatial light modulator,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 107–115 (1991).

Warde, C.

C. Warde, A. D. Fisher, “Spatial light modulators: applications and functional capabilities,” in Optical Signal Processing, J. Horner, ed. (Academic, San Diego, Calif., 1987), pp. 477–523.

Appl. Opt. (2)

Ferroelectrics (1)

M. A. Handschy, K. M. Johnson, G. Moddel, “Electro-optic applications of ferroelectric liquid crystals to optical computing,” Ferroelectrics 85, 279–289 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

See, for example, K. M. Johnson, D. J. McKnight, I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Proc. Inst. Electr. Eng. (1)

I. Underwood, D. G. Vass, R. M. Sillitto, “Evaluation of an nMOS VLSI array for an adaptive liquid-crystal spatial light modulator,” Proc. Inst. Electr. Eng. 133, 77–82 (1986).

Other (9)

M. S. McKeekin, W. T. Rhodes, “Texture segmentation by threshold decomposition fitering,” in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 132.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, S. G. Latham, “A high performance spatial light modulator,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 107–115 (1991).

S. A. Serati, Boulder Nonlinear Systems Inc., 1898 Flatiron Court, Boulder, Colo. 80301 (personal communication, 1993).

C. Warde, A. D. Fisher, “Spatial light modulators: applications and functional capabilities,” in Optical Signal Processing, J. Horner, ed. (Academic, San Diego, Calif., 1987), pp. 477–523.

M. Handschy, L. K. Cotter, J. D. Cunningham, T. Drabik, S. D. Gaalema, “One-transistor DRAM FLC/VLSI SLM,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 14–17.

R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1978), p. 101–104.

B. D. Bock, T. A. Crow, M. K. Giles, “Design considerations for miniature optical correlation systems that use pixellated input and filter transducers,” in Optical Information-Processing Systems and Architectures II, B. Javidi, ed., Proc. Soc. Photo. Instrum. Eng.1347, 297–309 (1990).

S. A. Serati, T. K. Ewing, R. A. Serati, K. M. Johnson, D. M. Simon, “Programmable 128 by 128 ferroelectric liquid crystal spatial light modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1959, 55–68 (1993).

British Drug House mixtures are available from Merck Ltd., Westquay Road, Poole BH15 1HX, UK.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Test image displayed on the SLM. The image was spatially dithered, giving a gray-scale effect, One of the array data wires is not functioning correctly.

Fig. 2
Fig. 2

Photomicrograph of part of the pixel array at a higher magnification than in Fig. 1.

Fig. 3
Fig. 3

(a) Oscilloscope trace record of the optical rise time of the FLC layer in the SLM. The 10%–90% rise time is 50 μs. (b) Oscilloscope trace record of the optical fall time of the FLC layer in the SLM. The 90–10% fall time is 50 μs.

Fig. 4
Fig. 4

Oscilloscope trace record of the response of the first row of pixels on the SLM shown with the input clock waveform. The pixels receive their electrical signal on the eighth short clock pulse. The delay between the electrical stimulation and the 10% level of the optical response of the pixels can be estimated to be ~ 15 μs.

Fig. 5
Fig. 5

(a) Oscilloscope trace record that shows the modulation of output from a group of pixels under constant-voltage drive. (b) Oscilloscope trace record that shows the output from the same group of pixels under conventional drive.

Tables (2)

Tables Icon

Table 1 Comparison of Our Results with the Most Recently Published Results from Other Groups Working on Similar Devicesa

Tables Icon

Table 2 Comparison of the Energy Dissipation that is Intrinsic to Various Frame-Write Operations

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

τ frame = τ load + τ FLC .
f = N a 2 λ ,
t s = ( 3.6 η d U ) 1 / 2 ,
E = 2 P ( V + V ) / 2 ,
V = V - 2 P / C pixel .
E = N V 2 C SelectWire + F A ( 2 P V eff + ½ C Pix V Pix 2 ) + ½ G N 2 C DataWire V 2 ,

Metrics