Abstract

The absorption, fluorescence, and excitation spectra of a dye in a highly scattering random medium were studied experimentally. The intrinsic absorption spectrum of the dye does not change in the presence of scatterers, but the presence of scatterers in the media will change the observed fluorescence spectra. The observation is accounted for by the change in the photon trajectory path length for the fluorescence emission.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Yoo, Z. W. Zang, S. A. Ahmed, R. R. Alfano, “Imagine objects hidden in scattering media using a fluorescence-absorption technique,” Opt. Lett. 16, 1252–1254 (1991).
    [Crossref] [PubMed]
  2. D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics native cancerous and normal rat kidney tissues,” Biophys. J. Biophys. Soc. 50, 463–469 (1986).
    [Crossref]
  3. Y. L. Yang, Y. M. Ye, R. M. Li, Y. F. Li, P. Z. Ma, “Characteristic autofluorescence for cancer diagnosis and its origin,” Laser Surg. Med. 7, 528–533 (1987).
    [Crossref]
  4. S. Montan, L. G. Stroemblad, “Spectral characterization of brain tumors utilizing laser-induced fluorescence,” Lasers Life Sci. 1, 275–285 (1987).
  5. B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infrared regions,” J. Biol. Chem. 148, 173–183 (1943).
  6. J. Martorell, N. M. Lawandy, “Spontaneous emission in a disordered dielectric medium,” Phys. Rev. Lett. 66, 887–890 (1991).
    [Crossref] [PubMed]

1991 (2)

1987 (2)

Y. L. Yang, Y. M. Ye, R. M. Li, Y. F. Li, P. Z. Ma, “Characteristic autofluorescence for cancer diagnosis and its origin,” Laser Surg. Med. 7, 528–533 (1987).
[Crossref]

S. Montan, L. G. Stroemblad, “Spectral characterization of brain tumors utilizing laser-induced fluorescence,” Lasers Life Sci. 1, 275–285 (1987).

1986 (1)

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics native cancerous and normal rat kidney tissues,” Biophys. J. Biophys. Soc. 50, 463–469 (1986).
[Crossref]

1943 (1)

B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infrared regions,” J. Biol. Chem. 148, 173–183 (1943).

Ahmed, S. A.

Alfano, M. A.

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics native cancerous and normal rat kidney tissues,” Biophys. J. Biophys. Soc. 50, 463–469 (1986).
[Crossref]

Alfano, R. R.

K. M. Yoo, Z. W. Zang, S. A. Ahmed, R. R. Alfano, “Imagine objects hidden in scattering media using a fluorescence-absorption technique,” Opt. Lett. 16, 1252–1254 (1991).
[Crossref] [PubMed]

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics native cancerous and normal rat kidney tissues,” Biophys. J. Biophys. Soc. 50, 463–469 (1986).
[Crossref]

Cordero, J.

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics native cancerous and normal rat kidney tissues,” Biophys. J. Biophys. Soc. 50, 463–469 (1986).
[Crossref]

Foresti, M.

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics native cancerous and normal rat kidney tissues,” Biophys. J. Biophys. Soc. 50, 463–469 (1986).
[Crossref]

Horecker, B. L.

B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infrared regions,” J. Biol. Chem. 148, 173–183 (1943).

Lawandy, N. M.

J. Martorell, N. M. Lawandy, “Spontaneous emission in a disordered dielectric medium,” Phys. Rev. Lett. 66, 887–890 (1991).
[Crossref] [PubMed]

Li, R. M.

Y. L. Yang, Y. M. Ye, R. M. Li, Y. F. Li, P. Z. Ma, “Characteristic autofluorescence for cancer diagnosis and its origin,” Laser Surg. Med. 7, 528–533 (1987).
[Crossref]

Li, Y. F.

Y. L. Yang, Y. M. Ye, R. M. Li, Y. F. Li, P. Z. Ma, “Characteristic autofluorescence for cancer diagnosis and its origin,” Laser Surg. Med. 7, 528–533 (1987).
[Crossref]

Ma, P. Z.

Y. L. Yang, Y. M. Ye, R. M. Li, Y. F. Li, P. Z. Ma, “Characteristic autofluorescence for cancer diagnosis and its origin,” Laser Surg. Med. 7, 528–533 (1987).
[Crossref]

Martorell, J.

J. Martorell, N. M. Lawandy, “Spontaneous emission in a disordered dielectric medium,” Phys. Rev. Lett. 66, 887–890 (1991).
[Crossref] [PubMed]

Montan, S.

S. Montan, L. G. Stroemblad, “Spectral characterization of brain tumors utilizing laser-induced fluorescence,” Lasers Life Sci. 1, 275–285 (1987).

Stroemblad, L. G.

S. Montan, L. G. Stroemblad, “Spectral characterization of brain tumors utilizing laser-induced fluorescence,” Lasers Life Sci. 1, 275–285 (1987).

Tata, D. B.

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics native cancerous and normal rat kidney tissues,” Biophys. J. Biophys. Soc. 50, 463–469 (1986).
[Crossref]

Tomashefsky, P.

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics native cancerous and normal rat kidney tissues,” Biophys. J. Biophys. Soc. 50, 463–469 (1986).
[Crossref]

Yang, Y. L.

Y. L. Yang, Y. M. Ye, R. M. Li, Y. F. Li, P. Z. Ma, “Characteristic autofluorescence for cancer diagnosis and its origin,” Laser Surg. Med. 7, 528–533 (1987).
[Crossref]

Ye, Y. M.

Y. L. Yang, Y. M. Ye, R. M. Li, Y. F. Li, P. Z. Ma, “Characteristic autofluorescence for cancer diagnosis and its origin,” Laser Surg. Med. 7, 528–533 (1987).
[Crossref]

Yoo, K. M.

Zang, Z. W.

Biophys. J. Biophys. Soc. (1)

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics native cancerous and normal rat kidney tissues,” Biophys. J. Biophys. Soc. 50, 463–469 (1986).
[Crossref]

J. Biol. Chem. (1)

B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infrared regions,” J. Biol. Chem. 148, 173–183 (1943).

Laser Surg. Med. (1)

Y. L. Yang, Y. M. Ye, R. M. Li, Y. F. Li, P. Z. Ma, “Characteristic autofluorescence for cancer diagnosis and its origin,” Laser Surg. Med. 7, 528–533 (1987).
[Crossref]

Lasers Life Sci. (1)

S. Montan, L. G. Stroemblad, “Spectral characterization of brain tumors utilizing laser-induced fluorescence,” Lasers Life Sci. 1, 275–285 (1987).

Opt. Lett. (1)

Phys. Rev. Lett. (1)

J. Martorell, N. M. Lawandy, “Spontaneous emission in a disordered dielectric medium,” Phys. Rev. Lett. 66, 887–890 (1991).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Excitation and detection arrangement of dye fluorescence in a transparent plastic cell.

Fig. 2
Fig. 2

(a) Fluorescence spectra of 2 × 10−4-M Rh6G in a MPD solution. Solid curve, front-surface detection from a 0.016-cm-thick cell; dashed curve, front-surface detection from a 1-cm-thick cell; dashed–dotted curve, side-surface detection from a 1-cm-thick cell. (b) Fluorescence spectra of front-surface detection from a 1-cm-thick cell of 2 × 10−7-M Rh6G in MPD. Solid curve, dye solution; dashed curve, dye solution plus TiO2 scatterers.

Fig. 3
Fig. 3

Schematic of the experimental setup for studying the effect of the fluorescence spectrum when it passes through a dye and a scattering medium.

Fig. 4
Fig. 4

Fluorescence spectra (from 2 × 10−4-M Rh6G in a 1-cm-thick cell) when it passes through a sample: solid curve, with no scatterer and with a TiO2 scatterer in the MPD; dashed curve, TiO2 in MPD with a Rh6G dye (2 × 10−4 M).

Fig. 5
Fig. 5

Comparison of the fluorescence of a thin (0.016-cm) cell dye (3 × 10−7-M) with and without scatterers: solid curve, dye fluorescence; dashed curve, dye with scatterers' fluorescence.

Fig. 6
Fig. 6

Comparison of a dye (3 × 10−7 M) and dye with with scatterers' fluorescence of a maximum blue shift in a 1-cm-thick cell. Solid curve, dye fluorescence; dashed curve, dye with scatterer fluorescence with scatterers.

Fig. 7
Fig. 7

Comparison of the excitation spectra of DCM dye (2.6 × 10−4 M) and dye with the scatterers increasing: solid curve, dye fluorescence; dashed curve, dye with 0.005-g scatterers' fluorescence; dashed–dotted curve, dye with 0.009-g scatterers' fluorescence; dotted curve, dye with 0.039-g scatterers' fluorescence.

Metrics