Abstract

A comparative study of evanescent-wave fiber-optic absorption sensors based on uniform and tapered fibers has been carried out. The expressions for an effective evanescent-absorption coefficient have been derived for diffused or Lambertian source illumination. It has been shown that the sensitivity of sensors depends on the numerical aperture of the fiber, the taper ratio, and the refractive index of the absorbing fluid. The higher the sensitivity the smaller the range of functional refractive indices of the fluid. In the case of taper, which fiber (with a low or high numerical aperture) has maximum sensitivity depends on the refractive index of the fluid.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967).
  2. F. M. Mirabella, N. J. Harrick, eds., Internal Reflection Spectroscopy: Review and Supplement (Harrick Scientific, New York, 1985), pp. 1–78.
  3. P. H. Paul, G. Kychakoff, “Fiber-optic evanescent field absorption sensors,” Appl. Phys. Lett. 51, 12–14 (1987).
    [CrossRef]
  4. S. Simhony, A. Katzir, E. M. Kosower, “Fourier transform infrared spectra of organic compounds in solution and as thin layers obtained by using an attenuated total internal refiectance fiber-optic cell,” Anal. Chem. 60, 1908–1910 (1988).
    [CrossRef]
  5. C. A. Villarruel, D. D. Dominguez, D. Dandridge, “Evanescent wave fiber optic chemical sensor,” in Fiber optic Sensors II, A. M. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.798, 225–229 (1987).
  6. S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).
    [CrossRef]
  7. I. Schnitzer, A. Katzir, U. Schiessl, W. J. Riedel, M. Tacke, “Fiber-optic-based evanescent field chemical sensor using tunable diode lasers for the mid-infrared spectral region,” J. Appl. Phys. 66, 5667–5670 (1989).
    [CrossRef]
  8. V. Ruddy, B. D. MacCraith, J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
    [CrossRef]
  9. L. C. Shriver-Lake, G. P. Anderson, J. P. Golden, F. S. Ligler, “The effect of tapering the optical fiber on evanescent wave measurements,” Anal. Lett. 25, 1183–1199 (1992).
    [CrossRef]
  10. S. R. Lowry, T. E. May, A. Bornstein, “Signal enhancement technique for internal reflection spectroscopy,” Appl. Spectrosc. 47, 30–34 (1993).
    [CrossRef]
  11. P. Lorrain, D. P. Corson, F. Lorrain, Electromagnetic Fields and Waves (Freeman, New York, 1988).
  12. V. Ruddy, “An effective attenuation coefficient for evanescent wave spectroscopy using multimode fiber,” Fiber Integrated Opt. 9, 142–150 (1990).
  13. B. D. Gupta, A. Sharma, C. D. Singh, “Evanescent wave absorption sensors based on uniform and tapered fibers: a comparative study of their sensitivities,” Int. J. Optoelectron. 8, 409–418 (1993).
  14. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  15. A. Ankiewicz, C. Pask, A. W. Snyder, “Slowly varying optical fibers,” J. Opt. Soc. Am. 72, 198–203 (1982).
    [CrossRef]
  16. M. Brenci, R. Falciai, A. M. Scheggi, “Tapered enlarged ends in multimode optical fibers,” Appl. Opt. 21, 317–319 (1982).
    [CrossRef] [PubMed]

1993

B. D. Gupta, A. Sharma, C. D. Singh, “Evanescent wave absorption sensors based on uniform and tapered fibers: a comparative study of their sensitivities,” Int. J. Optoelectron. 8, 409–418 (1993).

S. R. Lowry, T. E. May, A. Bornstein, “Signal enhancement technique for internal reflection spectroscopy,” Appl. Spectrosc. 47, 30–34 (1993).
[CrossRef]

1992

L. C. Shriver-Lake, G. P. Anderson, J. P. Golden, F. S. Ligler, “The effect of tapering the optical fiber on evanescent wave measurements,” Anal. Lett. 25, 1183–1199 (1992).
[CrossRef]

1990

V. Ruddy, “An effective attenuation coefficient for evanescent wave spectroscopy using multimode fiber,” Fiber Integrated Opt. 9, 142–150 (1990).

V. Ruddy, B. D. MacCraith, J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
[CrossRef]

1989

I. Schnitzer, A. Katzir, U. Schiessl, W. J. Riedel, M. Tacke, “Fiber-optic-based evanescent field chemical sensor using tunable diode lasers for the mid-infrared spectral region,” J. Appl. Phys. 66, 5667–5670 (1989).
[CrossRef]

1988

S. Simhony, A. Katzir, E. M. Kosower, “Fourier transform infrared spectra of organic compounds in solution and as thin layers obtained by using an attenuated total internal refiectance fiber-optic cell,” Anal. Chem. 60, 1908–1910 (1988).
[CrossRef]

S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).
[CrossRef]

1987

P. H. Paul, G. Kychakoff, “Fiber-optic evanescent field absorption sensors,” Appl. Phys. Lett. 51, 12–14 (1987).
[CrossRef]

1982

Anderson, G. P.

L. C. Shriver-Lake, G. P. Anderson, J. P. Golden, F. S. Ligler, “The effect of tapering the optical fiber on evanescent wave measurements,” Anal. Lett. 25, 1183–1199 (1992).
[CrossRef]

Ankiewicz, A.

Bornstein, A.

Brenci, M.

Corson, D. P.

P. Lorrain, D. P. Corson, F. Lorrain, Electromagnetic Fields and Waves (Freeman, New York, 1988).

Dandridge, D.

C. A. Villarruel, D. D. Dominguez, D. Dandridge, “Evanescent wave fiber optic chemical sensor,” in Fiber optic Sensors II, A. M. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.798, 225–229 (1987).

Dominguez, D. D.

C. A. Villarruel, D. D. Dominguez, D. Dandridge, “Evanescent wave fiber optic chemical sensor,” in Fiber optic Sensors II, A. M. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.798, 225–229 (1987).

Falciai, R.

Golden, J. P.

L. C. Shriver-Lake, G. P. Anderson, J. P. Golden, F. S. Ligler, “The effect of tapering the optical fiber on evanescent wave measurements,” Anal. Lett. 25, 1183–1199 (1992).
[CrossRef]

Gupta, B. D.

B. D. Gupta, A. Sharma, C. D. Singh, “Evanescent wave absorption sensors based on uniform and tapered fibers: a comparative study of their sensitivities,” Int. J. Optoelectron. 8, 409–418 (1993).

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967).

Katzir, A.

I. Schnitzer, A. Katzir, U. Schiessl, W. J. Riedel, M. Tacke, “Fiber-optic-based evanescent field chemical sensor using tunable diode lasers for the mid-infrared spectral region,” J. Appl. Phys. 66, 5667–5670 (1989).
[CrossRef]

S. Simhony, A. Katzir, E. M. Kosower, “Fourier transform infrared spectra of organic compounds in solution and as thin layers obtained by using an attenuated total internal refiectance fiber-optic cell,” Anal. Chem. 60, 1908–1910 (1988).
[CrossRef]

S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).
[CrossRef]

Kosower, E. M.

S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).
[CrossRef]

S. Simhony, A. Katzir, E. M. Kosower, “Fourier transform infrared spectra of organic compounds in solution and as thin layers obtained by using an attenuated total internal refiectance fiber-optic cell,” Anal. Chem. 60, 1908–1910 (1988).
[CrossRef]

Kychakoff, G.

P. H. Paul, G. Kychakoff, “Fiber-optic evanescent field absorption sensors,” Appl. Phys. Lett. 51, 12–14 (1987).
[CrossRef]

Ligler, F. S.

L. C. Shriver-Lake, G. P. Anderson, J. P. Golden, F. S. Ligler, “The effect of tapering the optical fiber on evanescent wave measurements,” Anal. Lett. 25, 1183–1199 (1992).
[CrossRef]

Lorrain, F.

P. Lorrain, D. P. Corson, F. Lorrain, Electromagnetic Fields and Waves (Freeman, New York, 1988).

Lorrain, P.

P. Lorrain, D. P. Corson, F. Lorrain, Electromagnetic Fields and Waves (Freeman, New York, 1988).

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Lowry, S. R.

MacCraith, B. D.

V. Ruddy, B. D. MacCraith, J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
[CrossRef]

May, T. E.

Murphy, J. A.

V. Ruddy, B. D. MacCraith, J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
[CrossRef]

Pask, C.

Paul, P. H.

P. H. Paul, G. Kychakoff, “Fiber-optic evanescent field absorption sensors,” Appl. Phys. Lett. 51, 12–14 (1987).
[CrossRef]

Riedel, W. J.

I. Schnitzer, A. Katzir, U. Schiessl, W. J. Riedel, M. Tacke, “Fiber-optic-based evanescent field chemical sensor using tunable diode lasers for the mid-infrared spectral region,” J. Appl. Phys. 66, 5667–5670 (1989).
[CrossRef]

Ruddy, V.

V. Ruddy, B. D. MacCraith, J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
[CrossRef]

V. Ruddy, “An effective attenuation coefficient for evanescent wave spectroscopy using multimode fiber,” Fiber Integrated Opt. 9, 142–150 (1990).

Scheggi, A. M.

Schiessl, U.

I. Schnitzer, A. Katzir, U. Schiessl, W. J. Riedel, M. Tacke, “Fiber-optic-based evanescent field chemical sensor using tunable diode lasers for the mid-infrared spectral region,” J. Appl. Phys. 66, 5667–5670 (1989).
[CrossRef]

Schnitzer, I.

I. Schnitzer, A. Katzir, U. Schiessl, W. J. Riedel, M. Tacke, “Fiber-optic-based evanescent field chemical sensor using tunable diode lasers for the mid-infrared spectral region,” J. Appl. Phys. 66, 5667–5670 (1989).
[CrossRef]

S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).
[CrossRef]

Sharma, A.

B. D. Gupta, A. Sharma, C. D. Singh, “Evanescent wave absorption sensors based on uniform and tapered fibers: a comparative study of their sensitivities,” Int. J. Optoelectron. 8, 409–418 (1993).

Shriver-Lake, L. C.

L. C. Shriver-Lake, G. P. Anderson, J. P. Golden, F. S. Ligler, “The effect of tapering the optical fiber on evanescent wave measurements,” Anal. Lett. 25, 1183–1199 (1992).
[CrossRef]

Simhony, S.

S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).
[CrossRef]

S. Simhony, A. Katzir, E. M. Kosower, “Fourier transform infrared spectra of organic compounds in solution and as thin layers obtained by using an attenuated total internal refiectance fiber-optic cell,” Anal. Chem. 60, 1908–1910 (1988).
[CrossRef]

Singh, C. D.

B. D. Gupta, A. Sharma, C. D. Singh, “Evanescent wave absorption sensors based on uniform and tapered fibers: a comparative study of their sensitivities,” Int. J. Optoelectron. 8, 409–418 (1993).

Snyder, A. W.

A. Ankiewicz, C. Pask, A. W. Snyder, “Slowly varying optical fibers,” J. Opt. Soc. Am. 72, 198–203 (1982).
[CrossRef]

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Tacke, M.

I. Schnitzer, A. Katzir, U. Schiessl, W. J. Riedel, M. Tacke, “Fiber-optic-based evanescent field chemical sensor using tunable diode lasers for the mid-infrared spectral region,” J. Appl. Phys. 66, 5667–5670 (1989).
[CrossRef]

Villarruel, C. A.

C. A. Villarruel, D. D. Dominguez, D. Dandridge, “Evanescent wave fiber optic chemical sensor,” in Fiber optic Sensors II, A. M. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.798, 225–229 (1987).

Anal. Chem.

S. Simhony, A. Katzir, E. M. Kosower, “Fourier transform infrared spectra of organic compounds in solution and as thin layers obtained by using an attenuated total internal refiectance fiber-optic cell,” Anal. Chem. 60, 1908–1910 (1988).
[CrossRef]

Anal. Lett.

L. C. Shriver-Lake, G. P. Anderson, J. P. Golden, F. S. Ligler, “The effect of tapering the optical fiber on evanescent wave measurements,” Anal. Lett. 25, 1183–1199 (1992).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. H. Paul, G. Kychakoff, “Fiber-optic evanescent field absorption sensors,” Appl. Phys. Lett. 51, 12–14 (1987).
[CrossRef]

Appl. Spectrosc.

Fiber Integrated Opt.

V. Ruddy, “An effective attenuation coefficient for evanescent wave spectroscopy using multimode fiber,” Fiber Integrated Opt. 9, 142–150 (1990).

Int. J. Optoelectron.

B. D. Gupta, A. Sharma, C. D. Singh, “Evanescent wave absorption sensors based on uniform and tapered fibers: a comparative study of their sensitivities,” Int. J. Optoelectron. 8, 409–418 (1993).

J. Appl. Phys.

S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).
[CrossRef]

I. Schnitzer, A. Katzir, U. Schiessl, W. J. Riedel, M. Tacke, “Fiber-optic-based evanescent field chemical sensor using tunable diode lasers for the mid-infrared spectral region,” J. Appl. Phys. 66, 5667–5670 (1989).
[CrossRef]

V. Ruddy, B. D. MacCraith, J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
[CrossRef]

J. Opt. Soc. Am.

Other

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

P. Lorrain, D. P. Corson, F. Lorrain, Electromagnetic Fields and Waves (Freeman, New York, 1988).

C. A. Villarruel, D. D. Dominguez, D. Dandridge, “Evanescent wave fiber optic chemical sensor,” in Fiber optic Sensors II, A. M. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.798, 225–229 (1987).

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967).

F. M. Mirabella, N. J. Harrick, eds., Internal Reflection Spectroscopy: Review and Supplement (Harrick Scientific, New York, 1985), pp. 1–78.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Geometry of a taper.

Fig. 2
Fig. 2

Variation of γ/α as a function of n2 for a sensor based on fiber with NA = 0.2. The dashed curve corresponds to the uniform core fiber, and the solid curves correspond to tapered fiber with a different ρo.

Fig. 3
Fig. 3

Same as Fig. 2 except that in this case the fiber is of NA = 0.4.

Fig. 4
Fig. 4

Variation of the maximum value of γT/α as a function of n2 for two different NA's of the fiber.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

d p = λ 2 π n 1 ( sin 2 θ n 21 2 ) 1 / 2 ,
N = cot θ 2 ρ .
P = P 0 exp ( γ L ) ,
γ = N T ,
T = α λ n 2 cos θ π ( n 1 2 n 2 2 ) ( sin 2 θ n 21 2 ) 1 / 2 ,
γ = α λ n 2 cos 2 θ 2 π ρ ( n 1 2 n 2 2 ) sin θ ( sin 2 θ n 21 2 ) 1 / 2 .
( 1 P d P d c )
d P n 1 2 sin θ cos θ d θ ,
γ eff ( θ 1 , θ 2 ) = θ 1 θ 2 sin θ cos θ γ ( θ ) d θ θ 1 θ 2 sin θ cos θ d θ .
γ eff ( θ 1 , θ 2 ) = α λ n 1 π ρ ( n 1 2 n 2 2 ) f ( θ 2 ) f ( θ 1 ) ( sin 2 θ 2 sin 2 θ 1 ) ,
f ( θ ) = 1 2 n 12 3 { ( 2 n 12 2 1 ) ln [ 2 ( q 2 1 ) 1 / 2 + 2 q ] q ( q 2 1 ) 1 / 2 } , q = n 12 sin θ , n 12 = n 1 / n 2 .
ρ ( z ) sin θ a ( z ) = ρ i sin θ i ,
ϕ ( z ) = cos 1 [ ρ i cos θ / ρ ( z ) ] Ω ,
Ω = tan 1 ( ρ i ρ o L )
ρ ( z ) = ρ i z L ( ρ i ρ o ) .
γ T ( θ 1 , θ 2 , ρ o ) = 0 L d z ϕ 1 ( z ) ϕ 2 ( z ) sin θ cos θ γ ( θ , z ) d θ 0 L d z ϕ 1 ( z ) ϕ 2 ( z ) sin θ cos θ d θ ,
ϕ 1 ( z ) = cos 1 [ ρ i cos θ 1 / ρ ( z ) ] Ω , ϕ 2 ( z ) = cos 1 [ ρ i cos θ 2 / ρ ( z ) ] Ω .
γ T ( θ 1 , θ 2 , ρ o ) = α λ n 1 π ( n 1 2 n 2 2 ) × 0 L { f [ ϕ 2 ( z ) ] f [ ϕ 1 ( z ) ] } d z ρ ( z ) 0 L [ sin 2 ϕ 2 ( z ) sin 2 ϕ 1 ( z ) ] d z ,
ϕ ( z ) sin 1 ( n 2 / n 1 ) , 0 z L .
ρ o ρ i ( cos θ 1 cos θ c ) ,

Metrics