Abstract

By incorporation of an achromatic three-reflection quarterwave retarder to a spectroscopic ellipsometer and application of appropriate calibration and error correction procedures, it has been possible to characterize real thin-film fluoride optical coatings that are inhomogeneous. The refractive index and its dispersion with wavelengths greater than 300–700 nm as well as the depth profile of voids in the film have been determined for AlF3, CeF3, HfF4, LaF3, ScF3, and YF3 films on vitreous silica substrates.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Macleod, “Thin-film optical coatings,” in Applied Optics and Optical Engineering (Academic, New York, 1987, Vol. 10, pp. 1–26.
  2. D. P. Arndt, R. M. A. Azzam, J. M. Bennett, J. P. Borgogno, C. K. Carniglia, W. E. Case, J. A. Dobrowolski, U. J. Gibson, T. T. Hart, F. C. Ho, V. A. Hodgkin, W. P. Klapp, H. A. Macleod, E. Pelletier, M. K. Purvis, D. M. Quinn, D. H. Strome, R. Swenson, P. A. Temple, T. F. Thonn, “Multiple determination of the optical constants of thin-film coating materials,” Appl. Opt. 23, 3571–3596 (1984).
    [CrossRef] [PubMed]
  3. D. Smith, P. Baumeister, “Refractive index of some oxide and fluoride coating materials,” Appl. Opt. 18, 111–115 (1979).
    [CrossRef] [PubMed]
  4. M. Zukic, D. G. Torr, J. F. Spann, M. R. Torr, “Vacuum ultraviolet thin films. I: Optical constants of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 thin films,” Appl. Opt. 29, 4284–4292 (1990).
    [CrossRef] [PubMed]
  5. J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Appl. Opt. 21, 4020–4029 (1982).
    [CrossRef] [PubMed]
  6. J. P. Borgogno, F. Flory, P. Roche, B. Schmitt, G. Albrand, E. Pelletier, H. A. Macleod, “Refractive index and inhomogeneity of thin films,” Appl. Opt. 23, 3567–3571 (1984).
    [CrossRef] [PubMed]
  7. A. Piegari, G. Emiliani, “Analysis of inhomogeneous thin films by spectrophotometric measurements,” Thin Solid Films 171, 243–250 (1989).
    [CrossRef]
  8. S. Y. Kim, K. Vedam, “Simultaneous determination of dispersion relation and depth profile of thorium fluoride thin film by spectroscopic ellipsometry,” Thin Solid Films 166, 325–334 (1988).
    [CrossRef]
  9. K. Vedam, S. Y. Kim, “Simultaneous determination of refractive index, its dispersion and depth profile of magnesium oxide thin film by spectroscopic ellipsometry,” Appl. Opt. 28, 2691–2694 (1989).
    [CrossRef] [PubMed]
  10. K. M. Gustin, “Optical characterization of low-index transparent thin films on transparent substrates by spectroscopic ellipsometry,” Appl. Opt. 26, 3796–3802 (1987).
    [CrossRef] [PubMed]
  11. J. M. M. De Nijs, A. van Silfhout, “Systematic and random errors in rotating-analyzer ellipsometry,” J. Opt. Soc. Am. A 5, 773–781 (1988).
    [CrossRef]
  12. G. E. Jellison, B. C. Sales, “Determination of the optical functions of transparent glasses by using spectroscopic ellipsometry,” Appl. Opt. 30, 4310–4315 (1991).
    [CrossRef] [PubMed]
  13. P. Chindaudom, K. Vedam, “Determination of the optical function n(λ) of vitreous silica by spectroscopic ellipsometry using an achromatic compensator,” Appl. Opt. 32, 6391–6398 (1993).
    [CrossRef] [PubMed]
  14. P. Chindaudom, K. Vedam, “Determination of the optical constants of an inhomogeneous transparent LaF3 thin film on a transparent substrate by spectroscopic ellipsometry,” Opt. Lett. 17, 538–540 (1992).
    [CrossRef] [PubMed]
  15. D. E. Aspnes, J. B. Theeten, F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).
    [CrossRef]
  16. D. E. Aspnes, “Microstructural information from optical properties in semiconductor technology,” in Optical Characterization Techniques for Semiconductor Technology, D. E. Aspnes, R. F. Potter, S. S. So, eds., Proc. Soc. Photo-Opt. Instrum. Eng.276, 188–195 (1981).
    [CrossRef]
  17. B. A. Movchan, A. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide, and zirconium dioxide,” Phys. Met. Metallogr. 28(4), 83–90 (1969).
  18. R. Messier, “Toward quantification of thin film morphology,” J. Vac. Sci. Technol. A 4, 490–495 (1986).
    [CrossRef]
  19. D. A. Bruggeman, “Berechnung verschiedener physikalisher Konstanten vor heterogenen Substanzen,” Ann. Phys. (Leipzig) 24, 636–664 (1935).
  20. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am 55, 1205–1209 (1965).
    [CrossRef]
  21. M. P. Wirick, “The near ultraviolet optical constants of lanthanum fluoride,” Appl. Opt. 5, 1966–1967 (1966).
    [CrossRef] [PubMed]
  22. S. Ogura, Ph.D. dissertation [Newcastle-upon-Tyne Polytechnic, Newcastle-upon-Tyne, UK, 1975;cited by J. D. Targrove, J. P. Lehan, L. J. Lingg, H. A. Macleod, J. A. Leavitt, L. C. McIntyre, in “Ion-assisted deposition of lanthanum fluoride thin films,” Appl. Opt. 26, 3733–3737 (1987)].Ogura's method is followed by J. D. Targrove, J. P. Lehan, L. J. Lingg, H. A. Macleod, J. A. Leavitt, L. C. McIntyre, “Ion-assisted deposition of lanthanum fluoride thin films,” Appl. Opt. 26, 3733–3737 (1987).
    [CrossRef]
  23. R. J. King, M. J. Downs, “Ellipsometry applied to films on dielectric substrates,” Surf. Sci. 16, 288–302 (1969).
    [CrossRef]
  24. D. F. Bezuidenhout, K. D. Clarke, “The optical properties of YF3 films,” Thin Solid Films 155, 17–30 (1987).
    [CrossRef]
  25. K.-H. Hellwege, ed., Optische Konstanten, Vol. II (8) of Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, Berlin, 1962), p. 153.

1993 (1)

1992 (1)

1991 (1)

1990 (1)

1989 (2)

1988 (2)

S. Y. Kim, K. Vedam, “Simultaneous determination of dispersion relation and depth profile of thorium fluoride thin film by spectroscopic ellipsometry,” Thin Solid Films 166, 325–334 (1988).
[CrossRef]

J. M. M. De Nijs, A. van Silfhout, “Systematic and random errors in rotating-analyzer ellipsometry,” J. Opt. Soc. Am. A 5, 773–781 (1988).
[CrossRef]

1987 (2)

1986 (1)

R. Messier, “Toward quantification of thin film morphology,” J. Vac. Sci. Technol. A 4, 490–495 (1986).
[CrossRef]

1984 (2)

1982 (1)

1979 (2)

D. Smith, P. Baumeister, “Refractive index of some oxide and fluoride coating materials,” Appl. Opt. 18, 111–115 (1979).
[CrossRef] [PubMed]

D. E. Aspnes, J. B. Theeten, F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).
[CrossRef]

1969 (2)

B. A. Movchan, A. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide, and zirconium dioxide,” Phys. Met. Metallogr. 28(4), 83–90 (1969).

R. J. King, M. J. Downs, “Ellipsometry applied to films on dielectric substrates,” Surf. Sci. 16, 288–302 (1969).
[CrossRef]

1966 (1)

1965 (1)

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am 55, 1205–1209 (1965).
[CrossRef]

1935 (1)

D. A. Bruggeman, “Berechnung verschiedener physikalisher Konstanten vor heterogenen Substanzen,” Ann. Phys. (Leipzig) 24, 636–664 (1935).

Albrand, G.

Arndt, D. P.

Aspnes, D. E.

D. E. Aspnes, J. B. Theeten, F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).
[CrossRef]

D. E. Aspnes, “Microstructural information from optical properties in semiconductor technology,” in Optical Characterization Techniques for Semiconductor Technology, D. E. Aspnes, R. F. Potter, S. S. So, eds., Proc. Soc. Photo-Opt. Instrum. Eng.276, 188–195 (1981).
[CrossRef]

Azzam, R. M. A.

Baumeister, P.

Bennett, J. M.

Bezuidenhout, D. F.

D. F. Bezuidenhout, K. D. Clarke, “The optical properties of YF3 films,” Thin Solid Films 155, 17–30 (1987).
[CrossRef]

Borgogno, J. P.

Bruggeman, D. A.

D. A. Bruggeman, “Berechnung verschiedener physikalisher Konstanten vor heterogenen Substanzen,” Ann. Phys. (Leipzig) 24, 636–664 (1935).

Carniglia, C. K.

Case, W. E.

Chindaudom, P.

Clarke, K. D.

D. F. Bezuidenhout, K. D. Clarke, “The optical properties of YF3 films,” Thin Solid Films 155, 17–30 (1987).
[CrossRef]

De Nijs, J. M. M.

Demchishin, A. V.

B. A. Movchan, A. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide, and zirconium dioxide,” Phys. Met. Metallogr. 28(4), 83–90 (1969).

Dobrowolski, J. A.

Downs, M. J.

R. J. King, M. J. Downs, “Ellipsometry applied to films on dielectric substrates,” Surf. Sci. 16, 288–302 (1969).
[CrossRef]

Emiliani, G.

A. Piegari, G. Emiliani, “Analysis of inhomogeneous thin films by spectrophotometric measurements,” Thin Solid Films 171, 243–250 (1989).
[CrossRef]

Flory, F.

Gibson, U. J.

Gustin, K. M.

Hart, T. T.

Ho, F. C.

Hodgkin, V. A.

Hottier, F.

D. E. Aspnes, J. B. Theeten, F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).
[CrossRef]

Jellison, G. E.

Kim, S. Y.

K. Vedam, S. Y. Kim, “Simultaneous determination of refractive index, its dispersion and depth profile of magnesium oxide thin film by spectroscopic ellipsometry,” Appl. Opt. 28, 2691–2694 (1989).
[CrossRef] [PubMed]

S. Y. Kim, K. Vedam, “Simultaneous determination of dispersion relation and depth profile of thorium fluoride thin film by spectroscopic ellipsometry,” Thin Solid Films 166, 325–334 (1988).
[CrossRef]

King, R. J.

R. J. King, M. J. Downs, “Ellipsometry applied to films on dielectric substrates,” Surf. Sci. 16, 288–302 (1969).
[CrossRef]

Klapp, W. P.

Lazarides, B.

Macleod, H. A.

Malitson, I. H.

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am 55, 1205–1209 (1965).
[CrossRef]

Messier, R.

R. Messier, “Toward quantification of thin film morphology,” J. Vac. Sci. Technol. A 4, 490–495 (1986).
[CrossRef]

Movchan, B. A.

B. A. Movchan, A. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide, and zirconium dioxide,” Phys. Met. Metallogr. 28(4), 83–90 (1969).

Ogura, S.

S. Ogura, Ph.D. dissertation [Newcastle-upon-Tyne Polytechnic, Newcastle-upon-Tyne, UK, 1975;cited by J. D. Targrove, J. P. Lehan, L. J. Lingg, H. A. Macleod, J. A. Leavitt, L. C. McIntyre, in “Ion-assisted deposition of lanthanum fluoride thin films,” Appl. Opt. 26, 3733–3737 (1987)].Ogura's method is followed by J. D. Targrove, J. P. Lehan, L. J. Lingg, H. A. Macleod, J. A. Leavitt, L. C. McIntyre, “Ion-assisted deposition of lanthanum fluoride thin films,” Appl. Opt. 26, 3733–3737 (1987).
[CrossRef]

Pelletier, E.

Piegari, A.

A. Piegari, G. Emiliani, “Analysis of inhomogeneous thin films by spectrophotometric measurements,” Thin Solid Films 171, 243–250 (1989).
[CrossRef]

Purvis, M. K.

Quinn, D. M.

Roche, P.

Sales, B. C.

Schmitt, B.

Smith, D.

Spann, J. F.

Strome, D. H.

Swenson, R.

Temple, P. A.

Theeten, J. B.

D. E. Aspnes, J. B. Theeten, F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).
[CrossRef]

Thonn, T. F.

Torr, D. G.

Torr, M. R.

van Silfhout, A.

Vedam, K.

Wirick, M. P.

Zukic, M.

Ann. Phys. (Leipzig) (1)

D. A. Bruggeman, “Berechnung verschiedener physikalisher Konstanten vor heterogenen Substanzen,” Ann. Phys. (Leipzig) 24, 636–664 (1935).

Appl. Opt. (10)

M. P. Wirick, “The near ultraviolet optical constants of lanthanum fluoride,” Appl. Opt. 5, 1966–1967 (1966).
[CrossRef] [PubMed]

K. Vedam, S. Y. Kim, “Simultaneous determination of refractive index, its dispersion and depth profile of magnesium oxide thin film by spectroscopic ellipsometry,” Appl. Opt. 28, 2691–2694 (1989).
[CrossRef] [PubMed]

K. M. Gustin, “Optical characterization of low-index transparent thin films on transparent substrates by spectroscopic ellipsometry,” Appl. Opt. 26, 3796–3802 (1987).
[CrossRef] [PubMed]

D. P. Arndt, R. M. A. Azzam, J. M. Bennett, J. P. Borgogno, C. K. Carniglia, W. E. Case, J. A. Dobrowolski, U. J. Gibson, T. T. Hart, F. C. Ho, V. A. Hodgkin, W. P. Klapp, H. A. Macleod, E. Pelletier, M. K. Purvis, D. M. Quinn, D. H. Strome, R. Swenson, P. A. Temple, T. F. Thonn, “Multiple determination of the optical constants of thin-film coating materials,” Appl. Opt. 23, 3571–3596 (1984).
[CrossRef] [PubMed]

D. Smith, P. Baumeister, “Refractive index of some oxide and fluoride coating materials,” Appl. Opt. 18, 111–115 (1979).
[CrossRef] [PubMed]

M. Zukic, D. G. Torr, J. F. Spann, M. R. Torr, “Vacuum ultraviolet thin films. I: Optical constants of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 thin films,” Appl. Opt. 29, 4284–4292 (1990).
[CrossRef] [PubMed]

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Appl. Opt. 21, 4020–4029 (1982).
[CrossRef] [PubMed]

J. P. Borgogno, F. Flory, P. Roche, B. Schmitt, G. Albrand, E. Pelletier, H. A. Macleod, “Refractive index and inhomogeneity of thin films,” Appl. Opt. 23, 3567–3571 (1984).
[CrossRef] [PubMed]

G. E. Jellison, B. C. Sales, “Determination of the optical functions of transparent glasses by using spectroscopic ellipsometry,” Appl. Opt. 30, 4310–4315 (1991).
[CrossRef] [PubMed]

P. Chindaudom, K. Vedam, “Determination of the optical function n(λ) of vitreous silica by spectroscopic ellipsometry using an achromatic compensator,” Appl. Opt. 32, 6391–6398 (1993).
[CrossRef] [PubMed]

J. Opt. Soc. Am (1)

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am 55, 1205–1209 (1965).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. A (1)

R. Messier, “Toward quantification of thin film morphology,” J. Vac. Sci. Technol. A 4, 490–495 (1986).
[CrossRef]

Opt. Lett. (1)

Phys. Met. Metallogr. (1)

B. A. Movchan, A. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide, and zirconium dioxide,” Phys. Met. Metallogr. 28(4), 83–90 (1969).

Phys. Rev. B (1)

D. E. Aspnes, J. B. Theeten, F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).
[CrossRef]

Surf. Sci. (1)

R. J. King, M. J. Downs, “Ellipsometry applied to films on dielectric substrates,” Surf. Sci. 16, 288–302 (1969).
[CrossRef]

Thin Solid Films (3)

D. F. Bezuidenhout, K. D. Clarke, “The optical properties of YF3 films,” Thin Solid Films 155, 17–30 (1987).
[CrossRef]

A. Piegari, G. Emiliani, “Analysis of inhomogeneous thin films by spectrophotometric measurements,” Thin Solid Films 171, 243–250 (1989).
[CrossRef]

S. Y. Kim, K. Vedam, “Simultaneous determination of dispersion relation and depth profile of thorium fluoride thin film by spectroscopic ellipsometry,” Thin Solid Films 166, 325–334 (1988).
[CrossRef]

Other (4)

D. E. Aspnes, “Microstructural information from optical properties in semiconductor technology,” in Optical Characterization Techniques for Semiconductor Technology, D. E. Aspnes, R. F. Potter, S. S. So, eds., Proc. Soc. Photo-Opt. Instrum. Eng.276, 188–195 (1981).
[CrossRef]

H. A. Macleod, “Thin-film optical coatings,” in Applied Optics and Optical Engineering (Academic, New York, 1987, Vol. 10, pp. 1–26.

S. Ogura, Ph.D. dissertation [Newcastle-upon-Tyne Polytechnic, Newcastle-upon-Tyne, UK, 1975;cited by J. D. Targrove, J. P. Lehan, L. J. Lingg, H. A. Macleod, J. A. Leavitt, L. C. McIntyre, in “Ion-assisted deposition of lanthanum fluoride thin films,” Appl. Opt. 26, 3733–3737 (1987)].Ogura's method is followed by J. D. Targrove, J. P. Lehan, L. J. Lingg, H. A. Macleod, J. A. Leavitt, L. C. McIntyre, “Ion-assisted deposition of lanthanum fluoride thin films,” Appl. Opt. 26, 3733–3737 (1987).
[CrossRef]

K.-H. Hellwege, ed., Optische Konstanten, Vol. II (8) of Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, Berlin, 1962), p. 153.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Observed and calculated ellipsometric [Δ(λ), ψ(λ)] spectra for the AlF3 film on vitreous silica.

Fig. 2
Fig. 2

Best-fit model of AlF3 film on vitreous silica.

Fig. 3
Fig. 3

Observed and calculated ellipsometric [Δ(λ), ψ(λ)] spectra for CeF3 film on vitreous silica.

Fig. 4
Fig. 4

Best-fit model of CeF3 film on vitreous silica.

Fig. 5
Fig. 5

Observed and calculated ellipsometric [Δ(λ), ψ(λ)] spectra for HfF4 film on vitreous silica.

Fig. 6
Fig. 6

Best-fit model of HfF4 film on vitreous silica.

Fig. 7
Fig. 7

Observed and calculated ellipsometric [Δ(λ), ψ(λ)] spectra for LaF3 film on vitreous silica.

Fig. 8
Fig. 8

Best-fit model of LaF3 film on vitreous silica.

Fig. 9
Fig. 9

Observed and calculated ellipsometric [Δ(λ), ψ(λ)] spectra for SCF3 film on vitreous silica.

Fig. 10
Fig. 10

Best-fit model of ScF3 film on vitreous silica.

Fig. 11
Fig. 11

Observed and calculated ellipsometric [Δ(λ), ψ(λ)] spectra for YF3 film on vitreous silica.

Fig. 12
Fig. 12

Best-fit model of YF3 film on vitreous silica.

Fig. 13
Fig. 13

Summary of the evaluated refractive index as a function of wavelength for fluoride films. The corresponding data on the dispersion of the vitreous silica substrate are also presented20: a, CeF3; b, LaF3; c, YF3; d, HfF4; e, ScF3; f, vitreous silica; g, AlF3.

Fig. 14
Fig. 14

Refractive index of CeF3: _, present work; ……., Smith and Baumeister3; ….., manufacturer; ------, Piegari and Emiliani.7

Fig. 15
Fig. 15

Refractive index of LaF3: _, present work; ……., Smith and Baumeister3; ○, Wirick21; ▵, Ogura22; □, King and Downs.23

Tables (2)

Tables Icon

Table 1 Model Parameters Evaluated by LRA of SE Data on Fluoride-Optical-Coating Materials

Tables Icon

Table 2 Refractive Index of Fluoride Optical-Coating Materials as a Function of Wavelength

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

tan Ψ exp ( i Δ ) = tan Ψ cs exp ( i Δ cs ) / tan Ψ c exp ( i Δ c ) ,
n 2 ( λ ) = A + B λ 2 / ( λ 2 λ 0 2 ) .

Metrics