Abstract

A concentric optical design for a grating spectrometer is described. General aberration theory is given for a family of designs of similar form, showing close similarities with the theory for conventional concentric imagers used in microlithography. Control of stray radiation in the concentric grating spectrometer is discussed.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Rockey, “High-resolution imaging spectrometer: a major advance in imaging spectroscopy,” in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1298, 93–104 (1990).
  2. L. L. Thompson, “Moderate-resolution imaging spectrometer for the NASA earth-observing system,” in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1298, 105–113 (1990).
  3. M. Rast, J. L. Bezy, “ESA's medium resolution imaging spectrometer (MERIS): mission, system, and applications,” in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1298, 114–126 (1990).
  4. G. Baudin, R. Bessudo, J. L. Bezy, M. A. Cutter, D. R. Lobb, “Medium resolution imaging spectrometer (MERIS),” in Future European and Japanese Remote-Sensing Sensors and Programs, P. N. Slater, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1490, 102–113 (1991).
  5. L. Mertz, “Concentric spectrographs,” Appl. Opt. 16, 3122–3124 (1977).
    [CrossRef] [PubMed]
  6. L. Mertz, advertisement in J. Opt. Soc. Am. 52, xi (October1962).
  7. J. Dyson, “Unit magnification optical system without Seidel aberrations,” J. Opt. Soc. Am. 49, 713–716 (1959).
    [CrossRef]
  8. C. G. Wynne, “Monocentric telescopes for microlithography,” Opt. Eng. 26, 300–303 (1987).
  9. A. Offner, “Annular field systems and the future of optical microlithography,” Opt. Eng. 26, 294–299 (1987).
  10. H. H. Hopkins, Wave Theory of Aberrations (Oxford U. Press, London, 1950).
  11. W. T. Welford, “Aberration theory of gratings and grating mountings,” in Progress in optics, E. Wolf, ed. (North-Holland, Amsterdam, 1965), Vol. 4, Chap. 6, pp. 241–280.
    [CrossRef]

1987 (2)

C. G. Wynne, “Monocentric telescopes for microlithography,” Opt. Eng. 26, 300–303 (1987).

A. Offner, “Annular field systems and the future of optical microlithography,” Opt. Eng. 26, 294–299 (1987).

1977 (1)

1962 (1)

L. Mertz, advertisement in J. Opt. Soc. Am. 52, xi (October1962).

1959 (1)

Baudin, G.

G. Baudin, R. Bessudo, J. L. Bezy, M. A. Cutter, D. R. Lobb, “Medium resolution imaging spectrometer (MERIS),” in Future European and Japanese Remote-Sensing Sensors and Programs, P. N. Slater, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1490, 102–113 (1991).

Bessudo, R.

G. Baudin, R. Bessudo, J. L. Bezy, M. A. Cutter, D. R. Lobb, “Medium resolution imaging spectrometer (MERIS),” in Future European and Japanese Remote-Sensing Sensors and Programs, P. N. Slater, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1490, 102–113 (1991).

Bezy, J. L.

G. Baudin, R. Bessudo, J. L. Bezy, M. A. Cutter, D. R. Lobb, “Medium resolution imaging spectrometer (MERIS),” in Future European and Japanese Remote-Sensing Sensors and Programs, P. N. Slater, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1490, 102–113 (1991).

M. Rast, J. L. Bezy, “ESA's medium resolution imaging spectrometer (MERIS): mission, system, and applications,” in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1298, 114–126 (1990).

Cutter, M. A.

G. Baudin, R. Bessudo, J. L. Bezy, M. A. Cutter, D. R. Lobb, “Medium resolution imaging spectrometer (MERIS),” in Future European and Japanese Remote-Sensing Sensors and Programs, P. N. Slater, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1490, 102–113 (1991).

Dyson, J.

Hopkins, H. H.

H. H. Hopkins, Wave Theory of Aberrations (Oxford U. Press, London, 1950).

Lobb, D. R.

G. Baudin, R. Bessudo, J. L. Bezy, M. A. Cutter, D. R. Lobb, “Medium resolution imaging spectrometer (MERIS),” in Future European and Japanese Remote-Sensing Sensors and Programs, P. N. Slater, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1490, 102–113 (1991).

Mertz, L.

L. Mertz, “Concentric spectrographs,” Appl. Opt. 16, 3122–3124 (1977).
[CrossRef] [PubMed]

L. Mertz, advertisement in J. Opt. Soc. Am. 52, xi (October1962).

Offner, A.

A. Offner, “Annular field systems and the future of optical microlithography,” Opt. Eng. 26, 294–299 (1987).

Rast, M.

M. Rast, J. L. Bezy, “ESA's medium resolution imaging spectrometer (MERIS): mission, system, and applications,” in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1298, 114–126 (1990).

Rockey, D. E.

D. E. Rockey, “High-resolution imaging spectrometer: a major advance in imaging spectroscopy,” in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1298, 93–104 (1990).

Thompson, L. L.

L. L. Thompson, “Moderate-resolution imaging spectrometer for the NASA earth-observing system,” in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1298, 105–113 (1990).

Welford, W. T.

W. T. Welford, “Aberration theory of gratings and grating mountings,” in Progress in optics, E. Wolf, ed. (North-Holland, Amsterdam, 1965), Vol. 4, Chap. 6, pp. 241–280.
[CrossRef]

Wynne, C. G.

C. G. Wynne, “Monocentric telescopes for microlithography,” Opt. Eng. 26, 300–303 (1987).

Appl. Opt. (1)

J. Opt. Soc. Am. (2)

Opt. Eng. (2)

C. G. Wynne, “Monocentric telescopes for microlithography,” Opt. Eng. 26, 300–303 (1987).

A. Offner, “Annular field systems and the future of optical microlithography,” Opt. Eng. 26, 294–299 (1987).

Other (6)

H. H. Hopkins, Wave Theory of Aberrations (Oxford U. Press, London, 1950).

W. T. Welford, “Aberration theory of gratings and grating mountings,” in Progress in optics, E. Wolf, ed. (North-Holland, Amsterdam, 1965), Vol. 4, Chap. 6, pp. 241–280.
[CrossRef]

D. E. Rockey, “High-resolution imaging spectrometer: a major advance in imaging spectroscopy,” in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1298, 93–104 (1990).

L. L. Thompson, “Moderate-resolution imaging spectrometer for the NASA earth-observing system,” in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1298, 105–113 (1990).

M. Rast, J. L. Bezy, “ESA's medium resolution imaging spectrometer (MERIS): mission, system, and applications,” in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1298, 114–126 (1990).

G. Baudin, R. Bessudo, J. L. Bezy, M. A. Cutter, D. R. Lobb, “Medium resolution imaging spectrometer (MERIS),” in Future European and Japanese Remote-Sensing Sensors and Programs, P. N. Slater, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1490, 102–113 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the imaging spectrometer.

Fig. 2
Fig. 2

MERIS spectrometer concept.

Fig. 3
Fig. 3

Concentric imager design forms.

Fig. 4
Fig. 4

Rays in object and image spaces.

Fig. 5
Fig. 5

Transmitting grating system.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

W I = { OQ } + { QI } { OP } { PI } + n λ N ( X , Y ) .
{ OP } { C P } = W 1 ( d 1 ) .
{ OQ } { C Q } = W 1 ( d 1 cos θ 1 ) μ 1 d 1 sin θ 1 .
{ OQ } { OP } = W 1 ( d 1 cos θ 1 ) W 1 ( d 1 ) μ 1 d 1 sin θ 1 .
{ QI } { PI } = W 2 ( d 2 cos θ 2 ) W 2 ( d 2 ) μ 2 d 2 sin θ 2 .
W I = W 1 ( d 1 cos θ 1 ) W 1 ( d 1 ) μ 1 d 1 sin θ 1 + W 2 ( d 2 cos θ 2 ) W 2 ( d 2 ) μ 2 d 2 sin θ 2 + n λ N ( X , Y ) .
W I = f ( W ) μ 1 d 1 sin θ 1 μ 2 d 2 sin θ 2 + n λ N ( X , Y ) ,
d 1 sin θ 1 = ( X x 1 + Y y 1 ) / R , d 2 sin θ 2 = ( X x 2 + Y y 2 ) / R ,
W I = f ( W ) μ 1 ( X x 1 + Y y 1 ) / R μ 2 ( X x 2 + Y y 2 ) / R + n λ N ( X , Y ) .
μ 1 x 1 / ( μ R ) , μ 1 y 1 / ( μ R ) , μ 2 x 2 / ( μ R ) , μ 2 y 2 / ( μ R ) .
μ 1 x 1 / R + μ 2 x 2 / R = 0 .
μ 1 y 1 / R + μ 2 y 2 / R = n λ / g .
W I = f ( W ) n λ Y / g + n λ N ( X , Y ) .
W I = W 1 ( d 1 cos θ 1 ) W 1 ( d 1 ) + W 2 ( d 2 cos θ 2 ) W 2 ( d 2 ) .
W 1 ( d ) = c 12 d 2 + c 14 d 4 + c 16 d 6 + , W 2 ( d ) = c 22 d 2 + c 24 d 4 + c 26 d 6 + .
W I = c 12 d 1 2 ( cos 2 θ 1 1 ) + c 14 d 1 4 ( cos 4 θ 1 1 ) + c 16 d 1 6 ( cos 6 θ 1 1 ) + c 22 d 2 2 ( cos 2 θ 2 1 ) + c 24 d 2 4 ( cos 4 θ 2 1 ) + c 26 d 2 6 ( cos 6 θ 2 1 ) , = sin 2 θ cos 2 ϕ 1 [ c 12 d 1 2 + c 14 d 1 4 ( cos 2 θ 1 + 1 ) + c 16 d 1 6 ( cos 4 θ 1 + cos 2 θ 1 + 1 ) ] sin 2 θ cos 2 ϕ 2 [ c 22 d 2 2 + c 24 d 2 4 ( cos 2 θ 2 + 1 ) + c 26 d 1 6 ( cos 4 θ 2 + cos 2 θ 2 + 1 ) ] .
W I = sin 2 θ cos 2 ϕ 1 [ c 12 d 1 2 + 2 c 14 d 1 4 + 3 c 16 d 1 6 + ] sin 2 θ cos 2 ϕ 2 [ c 22 d 2 2 + 2 c 24 d 2 4 + 3 c 26 d 1 6 + ] .
W I = sin 2 θ cos 2 ϕ 1 [ c 12 d 1 2 / R + 2 c 14 d 1 4 / R 3 + 3 c 16 d 1 6 / R 5 + ] sin 2 θ cos 2 ϕ 2 [ c 22 d 2 2 / R + 2 c 24 d 2 4 / R 3 + 3 c 26 d 1 6 / R 5 + ] ,
d 1 2 = d 1 2 cos 2 θ 1 + z 1 2 sin 2 θ 2 d 1 z 1 sin θ cos θ cos ϕ 1 .
W 1 ( d 1 ) W 1 ( d 1 cos θ 1 ) .
W 2 ( d 2 ) W 2 ( d 2 cos θ 2 ) ,
d 2 2 = d 2 2 cos 2 θ 2 + z 2 2 sin 2 θ 2 d 2 z 2 sin θ cos θ cos ϕ 2 .
δ W I = c 12 ( d 1 2 d 1 2 cos 2 θ 1 ) + c 14 ( d 1 4 d 1 4 cos 4 θ 1 ) + c 16 ( d 1 6 d 1 6 cos 6 θ 1 ) + + c 22 ( d 2 2 d 2 2 cos 2 θ 2 ) + c 24 ( d 2 4 d 2 4 cos 4 θ 2 ) + c 16 ( d 2 6 d 2 6 cos 6 θ 2 ) + .

Metrics