Abstract

A grating interferometer that uses all-reflecting optical components has been developed for operation in the extreme and far UV. The instrument uses a V-groove, ruled grating as its beam splitter and has no moving parts. A self-compensating optical design is employed that makes it tolerant to small misadjustments of optical alignments and convenient for space-flight applications. The instrument described here uses a 600-groove/mm plane diffraction grating that operates in the second order and obtains a resolving power of ∼100,000 at 1216 Å.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Barus, “The interferometry of reversed and nonreversed spectra,” Carnegie Institution of Washington Publ. 149 (1911), part 1.
  2. J. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Ph.D. dissertation (University of Wisconsin—Madison, Madison, Wisc., 1991).
  3. J. Harlander, R. J. Reynolds, F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
    [CrossRef]
  4. J. Harlander, F. L. Roesler, S. Chakrabarti, “Spatial heterodyne spectroscopy: a novel interferometric technique for the FUV,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy, H. S. Hudson, O. H. Siegmund, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1344, 120–131 (1990).
  5. B. Bush, D. M. Cotton, J. S. Vickers, S. Chakrabarti, “Instrument design and test results of the new all-reflection spatial heterodyne spectrometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 376–384 (1991).
  6. J. L. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Modular removable precision mechanism for alignment of a FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 308–312 (1991).
  7. J. L. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Rigid lightweight optical bench for a spaceborne FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 302–307 (1991).
  8. D. M. Cotton, B. Bach, B. C. Bush, S. Chakrabarti, “V-groove diffraction grating for use in a FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 313–318 (1991).
  9. O. H. W. Siegmund, M. Lampton, J. Bixler, S. Chakrabarti, J. Vallerga, S. Bowyer, R. F. Malina, “Wedge and strip image readout systems for photon-counting detectors in space astronomy,” J. Opt. Soc. Am. A 3, 2139–2145 (1986).
    [CrossRef]
  10. B. Y. Welsh, P. Jelinsky, R. F. Malina, “The Berkeley Extreme Ultraviolet Calibration Facility,” in X-Ray Instrumentation in Astronomy II, L. Golub, ed., Proc. Soc. Photo-Opt. Instrum. Eng.982, 335–341 (1988).
    [CrossRef]

1992 (1)

J. Harlander, R. J. Reynolds, F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[CrossRef]

1986 (1)

1911 (1)

C. Barus, “The interferometry of reversed and nonreversed spectra,” Carnegie Institution of Washington Publ. 149 (1911), part 1.

Bach, B.

D. M. Cotton, B. Bach, B. C. Bush, S. Chakrabarti, “V-groove diffraction grating for use in a FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 313–318 (1991).

Barus, C.

C. Barus, “The interferometry of reversed and nonreversed spectra,” Carnegie Institution of Washington Publ. 149 (1911), part 1.

Bixler, J.

Bowyer, S.

Bush, B.

B. Bush, D. M. Cotton, J. S. Vickers, S. Chakrabarti, “Instrument design and test results of the new all-reflection spatial heterodyne spectrometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 376–384 (1991).

Bush, B. C.

J. L. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Modular removable precision mechanism for alignment of a FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 308–312 (1991).

D. M. Cotton, B. Bach, B. C. Bush, S. Chakrabarti, “V-groove diffraction grating for use in a FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 313–318 (1991).

J. L. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Rigid lightweight optical bench for a spaceborne FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 302–307 (1991).

Chakrabarti, S.

O. H. W. Siegmund, M. Lampton, J. Bixler, S. Chakrabarti, J. Vallerga, S. Bowyer, R. F. Malina, “Wedge and strip image readout systems for photon-counting detectors in space astronomy,” J. Opt. Soc. Am. A 3, 2139–2145 (1986).
[CrossRef]

J. L. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Rigid lightweight optical bench for a spaceborne FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 302–307 (1991).

D. M. Cotton, B. Bach, B. C. Bush, S. Chakrabarti, “V-groove diffraction grating for use in a FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 313–318 (1991).

J. L. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Modular removable precision mechanism for alignment of a FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 308–312 (1991).

B. Bush, D. M. Cotton, J. S. Vickers, S. Chakrabarti, “Instrument design and test results of the new all-reflection spatial heterodyne spectrometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 376–384 (1991).

J. Harlander, F. L. Roesler, S. Chakrabarti, “Spatial heterodyne spectroscopy: a novel interferometric technique for the FUV,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy, H. S. Hudson, O. H. Siegmund, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1344, 120–131 (1990).

Chung, R.

J. L. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Modular removable precision mechanism for alignment of a FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 308–312 (1991).

J. L. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Rigid lightweight optical bench for a spaceborne FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 302–307 (1991).

Cotton, D. M.

D. M. Cotton, B. Bach, B. C. Bush, S. Chakrabarti, “V-groove diffraction grating for use in a FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 313–318 (1991).

J. L. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Rigid lightweight optical bench for a spaceborne FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 302–307 (1991).

J. L. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Modular removable precision mechanism for alignment of a FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 308–312 (1991).

B. Bush, D. M. Cotton, J. S. Vickers, S. Chakrabarti, “Instrument design and test results of the new all-reflection spatial heterodyne spectrometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 376–384 (1991).

Harlander, J.

J. Harlander, R. J. Reynolds, F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[CrossRef]

J. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Ph.D. dissertation (University of Wisconsin—Madison, Madison, Wisc., 1991).

J. Harlander, F. L. Roesler, S. Chakrabarti, “Spatial heterodyne spectroscopy: a novel interferometric technique for the FUV,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy, H. S. Hudson, O. H. Siegmund, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1344, 120–131 (1990).

Jelinsky, P.

B. Y. Welsh, P. Jelinsky, R. F. Malina, “The Berkeley Extreme Ultraviolet Calibration Facility,” in X-Ray Instrumentation in Astronomy II, L. Golub, ed., Proc. Soc. Photo-Opt. Instrum. Eng.982, 335–341 (1988).
[CrossRef]

Lampton, M.

Malina, R. F.

O. H. W. Siegmund, M. Lampton, J. Bixler, S. Chakrabarti, J. Vallerga, S. Bowyer, R. F. Malina, “Wedge and strip image readout systems for photon-counting detectors in space astronomy,” J. Opt. Soc. Am. A 3, 2139–2145 (1986).
[CrossRef]

B. Y. Welsh, P. Jelinsky, R. F. Malina, “The Berkeley Extreme Ultraviolet Calibration Facility,” in X-Ray Instrumentation in Astronomy II, L. Golub, ed., Proc. Soc. Photo-Opt. Instrum. Eng.982, 335–341 (1988).
[CrossRef]

Reynolds, R. J.

J. Harlander, R. J. Reynolds, F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[CrossRef]

Roesler, F. L.

J. Harlander, R. J. Reynolds, F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[CrossRef]

J. Harlander, F. L. Roesler, S. Chakrabarti, “Spatial heterodyne spectroscopy: a novel interferometric technique for the FUV,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy, H. S. Hudson, O. H. Siegmund, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1344, 120–131 (1990).

Siegmund, O. H. W.

Tom, J. L.

J. L. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Modular removable precision mechanism for alignment of a FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 308–312 (1991).

J. L. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Rigid lightweight optical bench for a spaceborne FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 302–307 (1991).

Vallerga, J.

Vickers, J. S.

B. Bush, D. M. Cotton, J. S. Vickers, S. Chakrabarti, “Instrument design and test results of the new all-reflection spatial heterodyne spectrometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 376–384 (1991).

Welsh, B. Y.

B. Y. Welsh, P. Jelinsky, R. F. Malina, “The Berkeley Extreme Ultraviolet Calibration Facility,” in X-Ray Instrumentation in Astronomy II, L. Golub, ed., Proc. Soc. Photo-Opt. Instrum. Eng.982, 335–341 (1988).
[CrossRef]

Astrophys. J. (1)

J. Harlander, R. J. Reynolds, F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[CrossRef]

Carnegie Institution of Washington Publ. 149 (1)

C. Barus, “The interferometry of reversed and nonreversed spectra,” Carnegie Institution of Washington Publ. 149 (1911), part 1.

J. Opt. Soc. Am. A (1)

Other (7)

B. Y. Welsh, P. Jelinsky, R. F. Malina, “The Berkeley Extreme Ultraviolet Calibration Facility,” in X-Ray Instrumentation in Astronomy II, L. Golub, ed., Proc. Soc. Photo-Opt. Instrum. Eng.982, 335–341 (1988).
[CrossRef]

J. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Ph.D. dissertation (University of Wisconsin—Madison, Madison, Wisc., 1991).

J. Harlander, F. L. Roesler, S. Chakrabarti, “Spatial heterodyne spectroscopy: a novel interferometric technique for the FUV,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy, H. S. Hudson, O. H. Siegmund, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1344, 120–131 (1990).

B. Bush, D. M. Cotton, J. S. Vickers, S. Chakrabarti, “Instrument design and test results of the new all-reflection spatial heterodyne spectrometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 376–384 (1991).

J. L. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Modular removable precision mechanism for alignment of a FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 308–312 (1991).

J. L. Tom, D. M. Cotton, B. C. Bush, R. Chung, S. Chakrabarti, “Rigid lightweight optical bench for a spaceborne FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 302–307 (1991).

D. M. Cotton, B. Bach, B. C. Bush, S. Chakrabarti, “V-groove diffraction grating for use in a FUV spatial heterodyne interferometer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy II, O. H. Siegmund, R. E. Rothschild, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1549, 313–318 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Optical layout for the SCARI. The grating splits and recombines the two arms of the interferometer (dotted and dashed lines). The camera (converging) mirror images the interferogram onto a position-sensitive detector. The arrows indicate the direction of propagation of light in the instrument. The coordinate convention shown at the bottom left corner is that used in the paper.

Fig. 2
Fig. 2

SCARI optical concept. The interferometer is set up so that the zero spatial frequency corresponds to a particular wave number σ0. Wave number σ near σ0 yields a spatial frequency related to the difference (|σ − σ0|). Spatial heterodyning is produced by two slightly diverging arms of the interferometer that consists of two coherent plane waves displaced transversely. A camera lens or mirror acts to convert the plane waves into two coherent point sources. The modulation can be seen as a double-slit type of interference pattern. k0 in and k0 out correspond to wave number σ0; Kin, k out 1, and k out 2, correspond to wave number σ.

Fig. 3
Fig. 3

Expanded view of the diffraction grating showing the path taken by monochromatic collimated light at the central wavelength λ0 (solid lines) and the actual path taken by similar light at wavelength λ = λ0 + Δλ (dashed lines). The three beams are shown returning to the grating after having reflected off the side mirrors.

Fig. 4
Fig. 4

Two coherent propagating plane waves separated by an angle form Fizeau fringes. The spatial frequency of the fringes is determined by the angle between the propagating waves. The projection of the fringe pattern is shown for the given propagating waves.

Fig. 5
Fig. 5

Effects of the in-plane, side-mirror rotations for the 5461-Å SCARI. The two-dimensional fringes have been collapsed into one dimension for this figure. The spatial frequency of the fringes changes with the mirror rotation.

Fig. 6
Fig. 6

Interferogram taken at 5461 Å with a mercury pen-ray lamp for a source.

Fig. 7
Fig. 7

Same as Fig. 6 except that the side mirror of the interferometer has been rotated 10 arcsec.

Fig. 8
Fig. 8

Sample ray-trace interferogram for the sodium doublet lines. The top and middle panels show the interferograms of the individual spectra. The bottom panel shows that of the combined spectra. Note that it is the sum of the other two.

Fig. 9
Fig. 9

Laboratory image of the sodium doublet. Note that the fringes show a slight curvature, which is due to spherical aberration from the camera mirror.

Fig. 10
Fig. 10

Histogram of a section of the image shown in Fig. 9.

Fig. 11
Fig. 11

Top panel shows the input spectrum and interferogram of a pure (i.e., narrow FWHM) 2537-Å source. The middle panel shows the same for a natural sample (broadened from multiple isotopes). The bottom panel shows tho result whon an absorption cell cuts out the line center of the natural source.

Fig. 12
Fig. 12

Lyman-α interferometer inside the Berkeley calibration vacuum chamber.

Fig. 13
Fig. 13

Flat-fielded image of the Lyman-α interference fringes observed at the University of California at Berkeley. The fringe pattern can be seen in the left part of the image. The fringes are at an angle parallel to the rulings on the grating.

Fig. 14
Fig. 14

Histogram of the image shown in Fig. 13 along with the squared magnitude of its Fourier transform. The dotted curve is a scaled version of the synthetic input profile consisting of two offset Gaussians that were put into the ray-trace code (see Fig. 15).

Fig. 15
Fig. 15

Histogram of a ray-traced interferogram image along with the squared magnitude of its Fourier transform at Lyman-α. The dotted curve is a scaled input spectrum utilized in the code; 400,000 individual rays were used in the ray trace.

Fig. 16
Fig. 16

Functional equivalent to the final converging mirror setup of Fig. 1. For clarity a converging lens of focal length f is shown rather than a converging mirror. Shown are the two diverging beams of Fig. 2, which are focused to two point sources of coherent radiation at the focal plane of the lens. Further tracing of these two beams determines the plane (a distance z behind the focal plane) at which both beams exactly overlap. The detector should be placed in this plane.

Fig. 17
Fig. 17

Theoretical diffraction pattern produced by two point sources located at (±a, 0, z). The camera mirror used to generate this figure was selected to have a high speed (f/1.75) to exaggerate purposely the hyperbolic nature of the fringes.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

f x = 4 sin θ | σ σ 0 | ,
Ω = π ( 2 R ) 1 / 2 ( 2 R ) 1 / 2 cos θ = 2 π cos θ / R ,
f x = 4 sin ( θ ) | σ σ 0 | = N / ( 2 W ) ,
R = σ 0 σ min σ 0 = 4 sin ( θ ) σ 0 W = 4 W sin ( θ ) λ 0 ,
Δ λ B = ( 2 π R ) 1 / 2 cot θ λ 0 2 .
d ( sin β + sin α ) = ± m λ 0 ,
β m = sin 1 ( m λ 0 / d ) .
sin β = m λ / d .
Δ β β β m , Δ λ λ λ 0 ,
Δ β = m Δ λ d cos β m .
sin ϕ sin ( β m Δ β ) = ± m ( λ + Δ λ ) / d .
ϕ = 2 m Δ λ d .
z = L 2 cos 2 ( β m ) .
D 2 f ϕ 4 m f Δ λ d ,
1 f = 1 i + 1 o ,
δ ( x , y ) = [ ( x + a ) 2 + y 2 + z 2 ] 1 / 2 [ ( x a ) 2 + y 2 + z 2 ] 1 / 2 .
x 2 1 2 y 2 4 a 2 δ 2 1 = z 2 + a 2 δ 2 4 4 a 2 δ 2 1 .
x = ± z δ 2 a .
x = ± m λ 0 z d 4 m f Δ λ .
f x = 4 m f λ 0 z d Δ λ , f y = 0 .
w = W z f ,
R λ 0 Δ λ = 4 m W d = 4 W sin θ 0 λ 0 .
θ I P ( 2 R ) 1 / 2 cos θ 0 ,
θ O P ( 2 R ) 1 / 2 .

Metrics