Abstract

We extend the research of Holland and Hall on the use of waveguide modes to enhance the fluorescent signal from a layer of molecules [Opt. Lett. 10, 414 (1985)] by incorporating a grating into the basic sample structure. Our measurements show that the combination of the directionality imposed by the grating and the previously reported enhancement mechanism has the effect of increasing the intensity of the signal detected over a narrow angular range from a layer of fluorescing molecules by a factor of ∼1000 over that from a reference sample. Simultaneously our method allows for both polarization and wavelength discrimination of the emitted radiation because of the characteristic nature of the incorporated grating.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kuhn, “Classical aspects of energy transfer in molecular systems,” J. Chem. Phys. 53, 101–108 (1970).
    [CrossRef]
  2. K. H. Drexhage, “Interaction of light with monomolecular dye layers,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1974), Vol. 12, pp. 163–232.
    [CrossRef]
  3. W. R. Holland, D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52, 1041–1044 (1984).
    [CrossRef]
  4. M. Fleischmann, P. J. Hendra, A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974);R. K. Chang, T. E. Furtak, eds., Surface Enhanced Raman Scattering (Plenum, New York, 1982).
    [CrossRef]
  5. W. R. Holland, D. G. Hall, “Waveguide mode enhancement of molecular fluorescence,” Opt. Lett. 10, 414–416 (1985);W. R. Holland, D. G. Hall, “Method and system for the enhancement of fluorescence,” U.S. patent4,649,280 (10March1987).
    [CrossRef] [PubMed]
  6. A. M. Glass, P. F. Liao, J. G. Berman, D. H. Olson, “Interaction of metal particles with adsorbed dye molecules: absorption and luminescence,” Opt. Lett. 5, 368–370 (1980).
    [CrossRef] [PubMed]
  7. W. H. Weber, C. F. Eagen, “Energy transfer from an excited dye molecule to the surfaces plasmons of an adjacent metal,” Opt. Lett. 4, 236–238 (1979).
    [CrossRef] [PubMed]
  8. I. Pockrand, A. Brillante, D. Mobius, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
    [CrossRef]
  9. R. P. H. Kooyman, H. Kolkman, J. Van Gent, J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
    [CrossRef]
  10. J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosensors Bioelectron. 6, 201–214 (1991).
    [CrossRef]
  11. Y. Zhou, P. J. R. Laybourn, J. V. Magill, R. M. De La Rue, “An evanescent fluorescence biosensor using ion-exchanged buried waveguides and the enhancement of peak fluorescence,” Biosensors Bioelectron. 6, 595–607 (1991).
    [CrossRef]
  12. R. Narayanaswamy, “Current developments in optical biochemical sensors,” Biosensors Bioelectron. 6, 467–475 (1991).
    [CrossRef]
  13. A. Adams, J. Moreland, P. K. Hansma, Z. Schlesinger, “Light emission from surface-plasmon and waveguide modes excited by N atoms near a silver grating,” Phys. Rev. B 25, 3457–3461 (1982).
    [CrossRef]
  14. W. Lukosz, D. Clerc, Ph. M. Nellen, Ch. Stamm, P. Weiss, “Output grating couplers on planar optical waveguides as direct immunosensors,” Biosensors Bioelectron. 6, 227–232 (1991).
    [CrossRef]
  15. Ph. M. Nellen, W. Lukosz, “Model experiments with integrated optical input grating couplers as direct immunosensors,” Biosensors Bioelectron. 6, 517–525 (1991).
    [CrossRef]
  16. See, for example, H. Kogelnik, “Theory of dielectric waveguides,” in Guided-Wave Optoelectronics, T. Tamir, ed. (Springer-Verlag, Berlin, 1988), pp. 7–88.
    [CrossRef]
  17. G. W. Ford, W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
    [CrossRef]
  18. O. S. Heavens, S. D. Smith, “Dielectric thin films,” J. Opt. Soc. Am. 47, 469–472 (1957).
    [CrossRef]
  19. D. G. Hall, “Method and system for directional, enhanced fluorescence from molecular layers,” U.S. patent5,006,716 (9April1991).
  20. Using a decaying exponential profile for the power-distribution results in an ∼20% difference from the Gaussian profile calculations of theoretical widths and experimental lengths listed in Table 2.
  21. Calculations were performed with wgcalc, a computer program written by R. M. Emmons. See R. M. Emmons, D. G. Hall, “Buried-oxide silicon-on-insulator structures II: waveguide grating couplers,” IEEE J. Quantum Electron. 28, 164–175 (1992) for a discussion of the theory on which the program is based.
    [CrossRef]

1992

Calculations were performed with wgcalc, a computer program written by R. M. Emmons. See R. M. Emmons, D. G. Hall, “Buried-oxide silicon-on-insulator structures II: waveguide grating couplers,” IEEE J. Quantum Electron. 28, 164–175 (1992) for a discussion of the theory on which the program is based.
[CrossRef]

1991

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosensors Bioelectron. 6, 201–214 (1991).
[CrossRef]

Y. Zhou, P. J. R. Laybourn, J. V. Magill, R. M. De La Rue, “An evanescent fluorescence biosensor using ion-exchanged buried waveguides and the enhancement of peak fluorescence,” Biosensors Bioelectron. 6, 595–607 (1991).
[CrossRef]

R. Narayanaswamy, “Current developments in optical biochemical sensors,” Biosensors Bioelectron. 6, 467–475 (1991).
[CrossRef]

W. Lukosz, D. Clerc, Ph. M. Nellen, Ch. Stamm, P. Weiss, “Output grating couplers on planar optical waveguides as direct immunosensors,” Biosensors Bioelectron. 6, 227–232 (1991).
[CrossRef]

Ph. M. Nellen, W. Lukosz, “Model experiments with integrated optical input grating couplers as direct immunosensors,” Biosensors Bioelectron. 6, 517–525 (1991).
[CrossRef]

1988

R. P. H. Kooyman, H. Kolkman, J. Van Gent, J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[CrossRef]

1985

1984

W. R. Holland, D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52, 1041–1044 (1984).
[CrossRef]

G. W. Ford, W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[CrossRef]

1982

A. Adams, J. Moreland, P. K. Hansma, Z. Schlesinger, “Light emission from surface-plasmon and waveguide modes excited by N atoms near a silver grating,” Phys. Rev. B 25, 3457–3461 (1982).
[CrossRef]

1980

I. Pockrand, A. Brillante, D. Mobius, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
[CrossRef]

A. M. Glass, P. F. Liao, J. G. Berman, D. H. Olson, “Interaction of metal particles with adsorbed dye molecules: absorption and luminescence,” Opt. Lett. 5, 368–370 (1980).
[CrossRef] [PubMed]

1979

1974

M. Fleischmann, P. J. Hendra, A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974);R. K. Chang, T. E. Furtak, eds., Surface Enhanced Raman Scattering (Plenum, New York, 1982).
[CrossRef]

1970

H. Kuhn, “Classical aspects of energy transfer in molecular systems,” J. Chem. Phys. 53, 101–108 (1970).
[CrossRef]

1957

Adams, A.

A. Adams, J. Moreland, P. K. Hansma, Z. Schlesinger, “Light emission from surface-plasmon and waveguide modes excited by N atoms near a silver grating,” Phys. Rev. B 25, 3457–3461 (1982).
[CrossRef]

Attridge, J. W.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosensors Bioelectron. 6, 201–214 (1991).
[CrossRef]

Berman, J. G.

Brillante, A.

I. Pockrand, A. Brillante, D. Mobius, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
[CrossRef]

Clerc, D.

W. Lukosz, D. Clerc, Ph. M. Nellen, Ch. Stamm, P. Weiss, “Output grating couplers on planar optical waveguides as direct immunosensors,” Biosensors Bioelectron. 6, 227–232 (1991).
[CrossRef]

Daniels, P. B.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosensors Bioelectron. 6, 201–214 (1991).
[CrossRef]

Davidson, G. P.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosensors Bioelectron. 6, 201–214 (1991).
[CrossRef]

De La Rue, R. M.

Y. Zhou, P. J. R. Laybourn, J. V. Magill, R. M. De La Rue, “An evanescent fluorescence biosensor using ion-exchanged buried waveguides and the enhancement of peak fluorescence,” Biosensors Bioelectron. 6, 595–607 (1991).
[CrossRef]

Deacon, J. K.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosensors Bioelectron. 6, 201–214 (1991).
[CrossRef]

Drexhage, K. H.

K. H. Drexhage, “Interaction of light with monomolecular dye layers,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1974), Vol. 12, pp. 163–232.
[CrossRef]

Eagen, C. F.

Emmons, R. M.

Calculations were performed with wgcalc, a computer program written by R. M. Emmons. See R. M. Emmons, D. G. Hall, “Buried-oxide silicon-on-insulator structures II: waveguide grating couplers,” IEEE J. Quantum Electron. 28, 164–175 (1992) for a discussion of the theory on which the program is based.
[CrossRef]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974);R. K. Chang, T. E. Furtak, eds., Surface Enhanced Raman Scattering (Plenum, New York, 1982).
[CrossRef]

Ford, G. W.

G. W. Ford, W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[CrossRef]

Glass, A. M.

Greve, J.

R. P. H. Kooyman, H. Kolkman, J. Van Gent, J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[CrossRef]

Hall, D. G.

Calculations were performed with wgcalc, a computer program written by R. M. Emmons. See R. M. Emmons, D. G. Hall, “Buried-oxide silicon-on-insulator structures II: waveguide grating couplers,” IEEE J. Quantum Electron. 28, 164–175 (1992) for a discussion of the theory on which the program is based.
[CrossRef]

W. R. Holland, D. G. Hall, “Waveguide mode enhancement of molecular fluorescence,” Opt. Lett. 10, 414–416 (1985);W. R. Holland, D. G. Hall, “Method and system for the enhancement of fluorescence,” U.S. patent4,649,280 (10March1987).
[CrossRef] [PubMed]

W. R. Holland, D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52, 1041–1044 (1984).
[CrossRef]

D. G. Hall, “Method and system for directional, enhanced fluorescence from molecular layers,” U.S. patent5,006,716 (9April1991).

Hansma, P. K.

A. Adams, J. Moreland, P. K. Hansma, Z. Schlesinger, “Light emission from surface-plasmon and waveguide modes excited by N atoms near a silver grating,” Phys. Rev. B 25, 3457–3461 (1982).
[CrossRef]

Heavens, O. S.

Hendra, P. J.

M. Fleischmann, P. J. Hendra, A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974);R. K. Chang, T. E. Furtak, eds., Surface Enhanced Raman Scattering (Plenum, New York, 1982).
[CrossRef]

Holland, W. R.

Kogelnik, H.

See, for example, H. Kogelnik, “Theory of dielectric waveguides,” in Guided-Wave Optoelectronics, T. Tamir, ed. (Springer-Verlag, Berlin, 1988), pp. 7–88.
[CrossRef]

Kolkman, H.

R. P. H. Kooyman, H. Kolkman, J. Van Gent, J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[CrossRef]

Kooyman, R. P. H.

R. P. H. Kooyman, H. Kolkman, J. Van Gent, J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[CrossRef]

Kuhn, H.

H. Kuhn, “Classical aspects of energy transfer in molecular systems,” J. Chem. Phys. 53, 101–108 (1970).
[CrossRef]

Laybourn, P. J. R.

Y. Zhou, P. J. R. Laybourn, J. V. Magill, R. M. De La Rue, “An evanescent fluorescence biosensor using ion-exchanged buried waveguides and the enhancement of peak fluorescence,” Biosensors Bioelectron. 6, 595–607 (1991).
[CrossRef]

Liao, P. F.

Lukosz, W.

W. Lukosz, D. Clerc, Ph. M. Nellen, Ch. Stamm, P. Weiss, “Output grating couplers on planar optical waveguides as direct immunosensors,” Biosensors Bioelectron. 6, 227–232 (1991).
[CrossRef]

Ph. M. Nellen, W. Lukosz, “Model experiments with integrated optical input grating couplers as direct immunosensors,” Biosensors Bioelectron. 6, 517–525 (1991).
[CrossRef]

Magill, J. V.

Y. Zhou, P. J. R. Laybourn, J. V. Magill, R. M. De La Rue, “An evanescent fluorescence biosensor using ion-exchanged buried waveguides and the enhancement of peak fluorescence,” Biosensors Bioelectron. 6, 595–607 (1991).
[CrossRef]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974);R. K. Chang, T. E. Furtak, eds., Surface Enhanced Raman Scattering (Plenum, New York, 1982).
[CrossRef]

Mobius, D.

I. Pockrand, A. Brillante, D. Mobius, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
[CrossRef]

Moreland, J.

A. Adams, J. Moreland, P. K. Hansma, Z. Schlesinger, “Light emission from surface-plasmon and waveguide modes excited by N atoms near a silver grating,” Phys. Rev. B 25, 3457–3461 (1982).
[CrossRef]

Narayanaswamy, R.

R. Narayanaswamy, “Current developments in optical biochemical sensors,” Biosensors Bioelectron. 6, 467–475 (1991).
[CrossRef]

Nellen, Ph. M.

Ph. M. Nellen, W. Lukosz, “Model experiments with integrated optical input grating couplers as direct immunosensors,” Biosensors Bioelectron. 6, 517–525 (1991).
[CrossRef]

W. Lukosz, D. Clerc, Ph. M. Nellen, Ch. Stamm, P. Weiss, “Output grating couplers on planar optical waveguides as direct immunosensors,” Biosensors Bioelectron. 6, 227–232 (1991).
[CrossRef]

Olson, D. H.

Pockrand, I.

I. Pockrand, A. Brillante, D. Mobius, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
[CrossRef]

Robinson, G. A.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosensors Bioelectron. 6, 201–214 (1991).
[CrossRef]

Schlesinger, Z.

A. Adams, J. Moreland, P. K. Hansma, Z. Schlesinger, “Light emission from surface-plasmon and waveguide modes excited by N atoms near a silver grating,” Phys. Rev. B 25, 3457–3461 (1982).
[CrossRef]

Smith, S. D.

Stamm, Ch.

W. Lukosz, D. Clerc, Ph. M. Nellen, Ch. Stamm, P. Weiss, “Output grating couplers on planar optical waveguides as direct immunosensors,” Biosensors Bioelectron. 6, 227–232 (1991).
[CrossRef]

Van Gent, J.

R. P. H. Kooyman, H. Kolkman, J. Van Gent, J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[CrossRef]

Weber, W. H.

G. W. Ford, W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[CrossRef]

W. H. Weber, C. F. Eagen, “Energy transfer from an excited dye molecule to the surfaces plasmons of an adjacent metal,” Opt. Lett. 4, 236–238 (1979).
[CrossRef] [PubMed]

Weiss, P.

W. Lukosz, D. Clerc, Ph. M. Nellen, Ch. Stamm, P. Weiss, “Output grating couplers on planar optical waveguides as direct immunosensors,” Biosensors Bioelectron. 6, 227–232 (1991).
[CrossRef]

Zhou, Y.

Y. Zhou, P. J. R. Laybourn, J. V. Magill, R. M. De La Rue, “An evanescent fluorescence biosensor using ion-exchanged buried waveguides and the enhancement of peak fluorescence,” Biosensors Bioelectron. 6, 595–607 (1991).
[CrossRef]

Anal. Chim. Acta

R. P. H. Kooyman, H. Kolkman, J. Van Gent, J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[CrossRef]

Biosensors Bioelectron.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosensors Bioelectron. 6, 201–214 (1991).
[CrossRef]

Y. Zhou, P. J. R. Laybourn, J. V. Magill, R. M. De La Rue, “An evanescent fluorescence biosensor using ion-exchanged buried waveguides and the enhancement of peak fluorescence,” Biosensors Bioelectron. 6, 595–607 (1991).
[CrossRef]

R. Narayanaswamy, “Current developments in optical biochemical sensors,” Biosensors Bioelectron. 6, 467–475 (1991).
[CrossRef]

W. Lukosz, D. Clerc, Ph. M. Nellen, Ch. Stamm, P. Weiss, “Output grating couplers on planar optical waveguides as direct immunosensors,” Biosensors Bioelectron. 6, 227–232 (1991).
[CrossRef]

Ph. M. Nellen, W. Lukosz, “Model experiments with integrated optical input grating couplers as direct immunosensors,” Biosensors Bioelectron. 6, 517–525 (1991).
[CrossRef]

Chem. Phys. Lett.

I. Pockrand, A. Brillante, D. Mobius, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
[CrossRef]

M. Fleischmann, P. J. Hendra, A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974);R. K. Chang, T. E. Furtak, eds., Surface Enhanced Raman Scattering (Plenum, New York, 1982).
[CrossRef]

IEEE J. Quantum Electron.

Calculations were performed with wgcalc, a computer program written by R. M. Emmons. See R. M. Emmons, D. G. Hall, “Buried-oxide silicon-on-insulator structures II: waveguide grating couplers,” IEEE J. Quantum Electron. 28, 164–175 (1992) for a discussion of the theory on which the program is based.
[CrossRef]

J. Chem. Phys.

H. Kuhn, “Classical aspects of energy transfer in molecular systems,” J. Chem. Phys. 53, 101–108 (1970).
[CrossRef]

J. Opt. Soc. Am.

Opt. Lett.

Phys. Rep.

G. W. Ford, W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[CrossRef]

Phys. Rev. B

A. Adams, J. Moreland, P. K. Hansma, Z. Schlesinger, “Light emission from surface-plasmon and waveguide modes excited by N atoms near a silver grating,” Phys. Rev. B 25, 3457–3461 (1982).
[CrossRef]

Phys. Rev. Lett.

W. R. Holland, D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52, 1041–1044 (1984).
[CrossRef]

Other

See, for example, H. Kogelnik, “Theory of dielectric waveguides,” in Guided-Wave Optoelectronics, T. Tamir, ed. (Springer-Verlag, Berlin, 1988), pp. 7–88.
[CrossRef]

K. H. Drexhage, “Interaction of light with monomolecular dye layers,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1974), Vol. 12, pp. 163–232.
[CrossRef]

D. G. Hall, “Method and system for directional, enhanced fluorescence from molecular layers,” U.S. patent5,006,716 (9April1991).

Using a decaying exponential profile for the power-distribution results in an ∼20% difference from the Gaussian profile calculations of theoretical widths and experimental lengths listed in Table 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Sample configurations: (a) reference sample, (b) planar, uncorrugated sample, (c) corrugated sample.

Fig. 2
Fig. 2

Measurement scheme. The sample on a rotation stage is excited by light incident at angle ϕ from source S. The intensity of the emitted fluorescence is measured with detector D oriented at angle θ.

Fig. 3
Fig. 3

Field profiles for representative waveguide modes. The field is plotted versus the coordinate measured perpendicular to the layers of the sample. (a) Electric-field profile of the TE0 mode. (b) Magnetic field profiles of the TM0 mode. (c) TM1 mode. Note: the TM-mode-field derivatives are discontinuous at the boundaries.

Fig. 4
Fig. 4

Measurements for the uncorrugated sample illustrated in Fig. 1(b). (a) Measured enhancement versus the LiF layer thickness from Ref. 5. (b) Present measured enhancement versus the LiF layer thickness for the metal-clad waveguide (the dashed curve is a guide for the eye) and for the glass/LiF/dye/air structure (the solid line is a linear fit to the experimental data).

Fig. 5
Fig. 5

Measured normalized intensity versus the emission angle θ for the uncorrugated sample illustrated in Fig. 1(b).

Fig. 6
Fig. 6

Measured effective enhancement factor α = I/Iref versus emission angle θ for the corrugated sample illustrated in Fig. 1(c): (a) TE-polarized radiation, (b) TM-polarized radiation; (c) unpolarized detection.

Fig. 7
Fig. 7

Emission angle and the direction of propagation for the corrugated system geometry. The angle θ is taken to be positive (negative) when measured counterclockwise (clockwise) from the sample normal. The +z direction is defined to point to the left in the sketch.

Tables (2)

Tables Icon

Table 1 Supported Waveguide Modes and Corresponding Emission Angles in Degrees

Tables Icon

Table 2 Comparison of Experimental Results with Theoretical Calculations for Peak Locations, Peak Half-Widths, and Power Coupling Lengths

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Re ( N ) m λ / Λ = sin ( θ m ) ,
b 2 = λ z 12 2 π b 1 cos θ [ 1 + ( b 1 2 λ ) 2 ( 1 z 12 + 1 R 1 ) 2 ] 1 / 2 ,
γ 1 / 2 b 2 z 12 λ 2 π b 1 cos θ ,

Metrics