Abstract

Algorithms that use the SeaWiFS radiometer band reflectance data for the retrieval of phytoplankton pigment concentration, suspended sediment concentration, and yellow substance absorption in coastal water are set up by a computation based on a three-component model of sea color. The varying coastal environment is characterized by a site-specific correlation among the three parameters, subjected to large spatial and temporal fluctuations. The computation is performed with respect to the summer situation of the Gulf of Naples (Mediterranean Sea). The sensitivity of the retrieval of each parameter to variations in the concentration of the two other quantities is investigated by numerical simulations. The sensitivity to the variability of the absorption and scattering properties of phytoplankton and suspended sediment is analyzed, as well as the error induced by the uncertainty of the remote-sensing data. The algorithms’s performance is satisfactorily tested on sets of SeaWiFS band reflectances randomly generated within wide water composition ranges. Although the results obtained cannot be generalized and require experimental validation, the series of tests performed suggests that the proposed algorithms, with numerical constants adjusted to the local conditions, can be effectively applied to several types of coastal environment.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
    [CrossRef]
  2. H. R. Gordon, A. Morel, “Remote assessment of ocean color for interpretation of satellite visible imagery: a review,” in Lecture Notes on Coastal and Estuarine Studies, M. Bowman, ed. (Springer-Verlag, Berlin, 1983), pp. 1–114.
    [CrossRef]
  3. D. K. Clark, E. T. Barker, A. E. Strong, “Upwelled spectral radiance distribution in relation with particulate matter in sea water,” Boundary-Layer Meteorol. 18, 287–298 (1980).
    [CrossRef]
  4. H. H. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–35 (1983).
    [CrossRef] [PubMed]
  5. W. Hovis, “The NIMBUS-7 coastal zone color scanner,” in Oceanography from Space, J. Gower, ed. (Plenum, New York, 1981), pp. 215–226.
  6. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “An overview of SeaWiFS and ocean color,” Vol. 1 of SeaWiFS Tech. Rep. Series, S. B. Hooker, E. R. Firestone, eds., NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992), p. 24.
  7. S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
    [CrossRef]
  8. A. Bricaud, D. Stramski, “Spectral absorption coefficients of living phytoplankton and non-algal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35, 562–582 (1990).
    [CrossRef]
  9. S. Tassan, M. Ribera d’Alcalà, “Water quality monitoring by Thematic Mapper in coastal environments. A performance analysis of local bio-optical algorithms and atmospheric correction procedures,” Remote Sensing Environ. 45, 177–191 (1993).
    [CrossRef]
  10. B. Sturm, “Ocean colour remote sensing: a status report,” in Satellite Remote Sensing for Hydrology and Water Management, E. C. Barret, C. H. Power, A. Micallef, eds. (Gordon & Breach, New York, 1990), pp. 243–277.
  11. J. L. Mueller, W. A. Roswell, “Ocean optics protocols for SeaWiFS validation,” Vol. 3 of SeaWiFS Tech. Rep. Series, S. B. Hooker, E. R. Firestone, eds., NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992), pp. 41.
  12. A. Bricaud, A. Morel, “Atmospheric corrections and interpretation of marine radiances in CZCS imagery: use of a reflectance model,” Oceanogr. Acta 7, 33–50 (1987).

1993

S. Tassan, M. Ribera d’Alcalà, “Water quality monitoring by Thematic Mapper in coastal environments. A performance analysis of local bio-optical algorithms and atmospheric correction procedures,” Remote Sensing Environ. 45, 177–191 (1993).
[CrossRef]

1990

A. Bricaud, D. Stramski, “Spectral absorption coefficients of living phytoplankton and non-algal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35, 562–582 (1990).
[CrossRef]

1989

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
[CrossRef]

1987

A. Bricaud, A. Morel, “Atmospheric corrections and interpretation of marine radiances in CZCS imagery: use of a reflectance model,” Oceanogr. Acta 7, 33–50 (1987).

1983

1981

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

1980

D. K. Clark, E. T. Barker, A. E. Strong, “Upwelled spectral radiance distribution in relation with particulate matter in sea water,” Boundary-Layer Meteorol. 18, 287–298 (1980).
[CrossRef]

Barker, E. T.

D. K. Clark, E. T. Barker, A. E. Strong, “Upwelled spectral radiance distribution in relation with particulate matter in sea water,” Boundary-Layer Meteorol. 18, 287–298 (1980).
[CrossRef]

Bricaud, A.

A. Bricaud, D. Stramski, “Spectral absorption coefficients of living phytoplankton and non-algal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35, 562–582 (1990).
[CrossRef]

A. Bricaud, A. Morel, “Atmospheric corrections and interpretation of marine radiances in CZCS imagery: use of a reflectance model,” Oceanogr. Acta 7, 33–50 (1987).

Broenkow, W. W.

Brown, J. W.

Brown, O. B.

Clark, D. K.

H. H. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–35 (1983).
[CrossRef] [PubMed]

D. K. Clark, E. T. Barker, A. E. Strong, “Upwelled spectral radiance distribution in relation with particulate matter in sea water,” Boundary-Layer Meteorol. 18, 287–298 (1980).
[CrossRef]

Esaias, W. E.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “An overview of SeaWiFS and ocean color,” Vol. 1 of SeaWiFS Tech. Rep. Series, S. B. Hooker, E. R. Firestone, eds., NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992), p. 24.

Evans, R. H.

Feldman, G. C.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “An overview of SeaWiFS and ocean color,” Vol. 1 of SeaWiFS Tech. Rep. Series, S. B. Hooker, E. R. Firestone, eds., NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992), p. 24.

Gordon, H. H.

Gordon, H. R.

H. R. Gordon, A. Morel, “Remote assessment of ocean color for interpretation of satellite visible imagery: a review,” in Lecture Notes on Coastal and Estuarine Studies, M. Bowman, ed. (Springer-Verlag, Berlin, 1983), pp. 1–114.
[CrossRef]

Gregg, W. W.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “An overview of SeaWiFS and ocean color,” Vol. 1 of SeaWiFS Tech. Rep. Series, S. B. Hooker, E. R. Firestone, eds., NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992), p. 24.

Hooker, S. B.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “An overview of SeaWiFS and ocean color,” Vol. 1 of SeaWiFS Tech. Rep. Series, S. B. Hooker, E. R. Firestone, eds., NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992), p. 24.

Hovis, W.

W. Hovis, “The NIMBUS-7 coastal zone color scanner,” in Oceanography from Space, J. Gower, ed. (Plenum, New York, 1981), pp. 215–226.

McClain, C. R.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “An overview of SeaWiFS and ocean color,” Vol. 1 of SeaWiFS Tech. Rep. Series, S. B. Hooker, E. R. Firestone, eds., NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992), p. 24.

Morel, A.

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
[CrossRef]

A. Bricaud, A. Morel, “Atmospheric corrections and interpretation of marine radiances in CZCS imagery: use of a reflectance model,” Oceanogr. Acta 7, 33–50 (1987).

H. R. Gordon, A. Morel, “Remote assessment of ocean color for interpretation of satellite visible imagery: a review,” in Lecture Notes on Coastal and Estuarine Studies, M. Bowman, ed. (Springer-Verlag, Berlin, 1983), pp. 1–114.
[CrossRef]

Mueller, J. L.

J. L. Mueller, W. A. Roswell, “Ocean optics protocols for SeaWiFS validation,” Vol. 3 of SeaWiFS Tech. Rep. Series, S. B. Hooker, E. R. Firestone, eds., NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992), pp. 41.

Prieur, L.

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
[CrossRef]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

Ribera d’Alcalà, M.

S. Tassan, M. Ribera d’Alcalà, “Water quality monitoring by Thematic Mapper in coastal environments. A performance analysis of local bio-optical algorithms and atmospheric correction procedures,” Remote Sensing Environ. 45, 177–191 (1993).
[CrossRef]

Roswell, W. A.

J. L. Mueller, W. A. Roswell, “Ocean optics protocols for SeaWiFS validation,” Vol. 3 of SeaWiFS Tech. Rep. Series, S. B. Hooker, E. R. Firestone, eds., NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992), pp. 41.

Sathyendranath, S.

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
[CrossRef]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

Stramski, D.

A. Bricaud, D. Stramski, “Spectral absorption coefficients of living phytoplankton and non-algal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35, 562–582 (1990).
[CrossRef]

Strong, A. E.

D. K. Clark, E. T. Barker, A. E. Strong, “Upwelled spectral radiance distribution in relation with particulate matter in sea water,” Boundary-Layer Meteorol. 18, 287–298 (1980).
[CrossRef]

Sturm, B.

B. Sturm, “Ocean colour remote sensing: a status report,” in Satellite Remote Sensing for Hydrology and Water Management, E. C. Barret, C. H. Power, A. Micallef, eds. (Gordon & Breach, New York, 1990), pp. 243–277.

Tassan, S.

S. Tassan, M. Ribera d’Alcalà, “Water quality monitoring by Thematic Mapper in coastal environments. A performance analysis of local bio-optical algorithms and atmospheric correction procedures,” Remote Sensing Environ. 45, 177–191 (1993).
[CrossRef]

Appl. Opt.

Boundary-Layer Meteorol.

D. K. Clark, E. T. Barker, A. E. Strong, “Upwelled spectral radiance distribution in relation with particulate matter in sea water,” Boundary-Layer Meteorol. 18, 287–298 (1980).
[CrossRef]

Int. J. Remote Sensing

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
[CrossRef]

Limnol. Oceanogr.

A. Bricaud, D. Stramski, “Spectral absorption coefficients of living phytoplankton and non-algal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35, 562–582 (1990).
[CrossRef]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

Oceanogr. Acta

A. Bricaud, A. Morel, “Atmospheric corrections and interpretation of marine radiances in CZCS imagery: use of a reflectance model,” Oceanogr. Acta 7, 33–50 (1987).

Remote Sensing Environ.

S. Tassan, M. Ribera d’Alcalà, “Water quality monitoring by Thematic Mapper in coastal environments. A performance analysis of local bio-optical algorithms and atmospheric correction procedures,” Remote Sensing Environ. 45, 177–191 (1993).
[CrossRef]

Other

B. Sturm, “Ocean colour remote sensing: a status report,” in Satellite Remote Sensing for Hydrology and Water Management, E. C. Barret, C. H. Power, A. Micallef, eds. (Gordon & Breach, New York, 1990), pp. 243–277.

J. L. Mueller, W. A. Roswell, “Ocean optics protocols for SeaWiFS validation,” Vol. 3 of SeaWiFS Tech. Rep. Series, S. B. Hooker, E. R. Firestone, eds., NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992), pp. 41.

H. R. Gordon, A. Morel, “Remote assessment of ocean color for interpretation of satellite visible imagery: a review,” in Lecture Notes on Coastal and Estuarine Studies, M. Bowman, ed. (Springer-Verlag, Berlin, 1983), pp. 1–114.
[CrossRef]

W. Hovis, “The NIMBUS-7 coastal zone color scanner,” in Oceanography from Space, J. Gower, ed. (Plenum, New York, 1981), pp. 215–226.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “An overview of SeaWiFS and ocean color,” Vol. 1 of SeaWiFS Tech. Rep. Series, S. B. Hooker, E. R. Firestone, eds., NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992), p. 24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Specific absorption spectra of chlorophyll a, suspended sediment, and yellow substance normalized to the value at the 440-nm wavelength (left scale). Absorption spectrum of water is in m−1 (right scale).7,8

Fig. 2
Fig. 2

Plots of chlorophyll concentration (C in mg m−3), suspended sediment concentration (S in g m−3), and yellow substance absorption [A y (440) in m−1] versus the computed retrieval variable [Eqs. (3)(5)]. (a), (c), (e) The results of the computation for 0.025 ≤ C(mg m−3) ≤ 1, with S given by Eq. (1) multiplied by δ in the range 0.25–3.0 and A y (440) given by Eq. (2). (b), (d), (f) The results of the computation for the same C range, with S given by Eq. (1) and A y (440) given by Eq. (2) multiplied by δ in the range 0.25–3.0. Triangles denote the results of the computation for S, A y (440), and C correlated by Eqs. (1) and (2), which are fitted by the retrieval algorithm (solid curve). The dotted curves delimit an interval of a factor of 2 on either side of the fit line. The diamonds denote the data corresponding to δ = 3 (b) and δ = 0.25 (f).

Fig. 3
Fig. 3

Plots of (a) chlorophyll concentration (C in mg m−3), (b) suspended sediment concentration (S in g m−3), and (c) yellow substance absorption [A y (440) in m−1] versus the retrieval variable [Eqs. (3)(5)] for 0.025 ≤ C(mg m−3) ≤ 1, with S and A y (440) given by Eqs. (1) and (2), but with absorption and scattering properties modified with respect to the data of Table 2 as specified in Section 5.

Fig. 4
Fig. 4

Scatter plots of retrieved versus input parameter for 0.05 ≤ C(mg m−3) ≤ 1, S, and A y (440) randomly varied about the values given by Eqs. (1) and (2) within a factor of 2: (a) C retrieved by Eq. (6), (b) retrieved by Eq. (7) S, (c)A y (440) retrieved by Eq. (8).

Tables (3)

Tables Icon

Table 1 Comparison of SeaWiFS and CZCS Bands

Tables Icon

Table 2 Three-Component Water Color Model

Tables Icon

Table 3 Upper Bound for the SeaWiFS Reflectance Error to Maintain the Error of C, S, A y (440) Retrieval below Prefixed Limits

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

log ( S ) = 0 . 25 + 0 . 57 log ( C ) , r ( x , y ) = 0 . 91 , s y = 35 % , N = 95 ,
log [ A y ( 440 ) ] = 1 . 20 + 0 . 47 log ( C ) , r ( x , y ) = 0 . 86 , s y = 42 % , N = 89 ,
log ( S ) = 0 . 026 + 0 . 59 log ( C ) , log [ A y ( 440 ) ] = 1 . 28 + 0 . 38 log ( C ) .
X c = [ R ( λ i ) / R ( λ j ) ] [ R ( λ m ) / R ( λ n ) ] a ,
X c = [ R ( λ 2 ) / R ( λ 5 ) ] [ R ( λ 1 ) / R ( λ 3 ) ] 1 . 2 .
X s = [ R ( λ i ) + R ( λ j ) ] [ R ( λ m ) / R ( λ n ) ] b ,
X s = [ R ( λ 5 ) + R ( λ 6 ) ] [ R ( λ 3 ) / R ( λ 5 ) ] 0 . 5 .
X y = [ R ( λ 1 ) / R ( λ 3 ) ] [ R ( λ 2 ) ] 0 . 5 ,
log ( C ) = 0 . 0664 + 0 . 0462 log ( X c ) 4 . 144 log ( X c ) 2 , 0 . 025 C ( mg m 3 ) 1 . 0 ,
log ( S ) = 1 . 83 + 1 . 26 log ( X s ) , 0 . 07 S ( g m 3 ) 0 . 56 ,
log [ A y ( 440 ) ] = 3 . 00 1 . 93 log ( X y ) , 0 . 01 A y ( 440 ) ( m 1 ) 0 . 065 .
X c = [ R ( λ 2 ) / R ( λ 5 ) ] [ R ( λ 1 ) / R ( λ 3 ) ] 0 . 5 for chlorophyll ,
X s = [ R ( λ 5 ) + R ( λ 6 ) ] [ R ( λ 3 ) / R ( λ 5 ) ] 1 . 2 for sediment ,
X y = [ R ( λ 1 ) / R ( λ 3 ) ] R ( λ 2 ) 0 . 25 for yellow substance .
log ( C ) = 0 . 36 4 . 38 log ( X c ) , 1 C ( mg m 3 ) 40 ,
log ( S ) = 1 . 82 + 1 . 23 log ( X s ) , 0 . 56 S ( g m 3 ) 4 . 6 .
log [ A y ( 440 ) ] = 4 . 36 6 . 08 log ( X y ) .

Metrics