Abstract

As a laser pulse propagates into the atmosphere, it becomes broader in the lateral direction as a result of scattering by aerosols. The laser pulse may be described as the superposition of a central, unscattered component of reduced intensity and a surrounding scattered component. A multiple field of view lidar has been developed that makes simultaneous measurements of the backscattered power from the central pulse and multiply scattered power arising from the scattered component. Measurements from various types of atmospheric aerosols and precipitation are presented and compared with simulated returns. The results show how the multiply scattered signals are influenced by the distribution of the aerosols along the lidar path, the characteristic size of the aerosols, and the optical depth. It is shown that the multiple field of view lidar can provide meaningful, additional information about the aerosols that is not available from a conventional single field of view lidar.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Pal, A. I. Carswell, “Polarization properties of lidar backscattering from clouds,” Appl. Opt. 12, 1530–1535 (1973).
    [Crossref] [PubMed]
  2. S. R. Pal, A. I. Carswell, “Multiple scattering in atmospheric clouds: lidar observation,” Appl. Opt. 15, 1990–1995 (1976).
    [Crossref] [PubMed]
  3. R. J. Allen, C. M. R. Piatt, “Lidar for multiple backscattering and depolarization observations,” Appl. Opt. 16, 3193–3199(1977).
    [Crossref] [PubMed]
  4. S. R. Pal, A. I. Carswell, “Polarization anisotropy in lidar multiple scattering from atmospheric clouds,” Appl. Opt. 24, 3464–3470 (1985).
    [Crossref] [PubMed]
  5. C. Werner, J. Streicher, H. Herrmann, H.-G. Dahn, “Multiple-scattering lidar experiments,” Opt. Eng. 31, 1731–1745 (1992).
    [Crossref]
  6. L. R. Bissonnette, D. L. Hutt, “Multiple scattering aerosol lidar inversion method,” Can. J. Phys. 71, 39–46 (1993).
    [Crossref]
  7. L. R. Bissonnette, “Multiscattered model for propagation of narrow light beams in aerosol media,” Appl. Opt. 27, 2478–2484(1988).
    [Crossref] [PubMed]
  8. L. R. Bissonnette, R. B. Smith, A. Ulitsky, J. D. Houston, A. I. Carswell, “Transmitted beam profiles, integrated backscatter and range resolved backscatter in inhomogeneous laboratory water droplet clouds,” Appl. Opt. 27, 2485–2494 (1988).
    [Crossref] [PubMed]
  9. L. R. Bissonnette, “Imaging through rain and fog.” Opt. Eng. 31, 1045–1052(1992).
    [Crossref]
  10. D. L. Hutt, L. R. Bissonnette, D. St. Germain, J. Oman, “Extinction of visible and infrared beams by falling snow,” Appl. Opt. 31, 5121–5131 (1992).
    [Crossref] [PubMed]
  11. D. Dermendjian, “Scattering and polarization properties of water clouds and hazes in the visible and infrared,” Appl. Opt. 3, 187–196 (1964).
    [Crossref]
  12. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  13. L. R. Bissonnette, D. L. Hutt, “Multiple scattering lidar,” Appl. Opt. 29, 5045–5046 (1990).
    [Crossref] [PubMed]
  14. D. L. Hutt, L. R. Bissonnette, L. Durand, “Multiscattered lidar returns from atmospheric aerosols,” in Propagation Engineering: Fourth in a Series, L. R. Bissonette, W. B. Miller, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1487, 250 (1991).
  15. K. J. Snell, G. Duplain, A. Parent, B. Labranche, P. Galarneau, “Diffraction-limited Ndrglass and alexandrite lasers using graded reflectivity mirror unstable resonators,” in Solid State Lasers II, G. Dube, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1410, 99–106 (1991).
  16. T. Halldorsson, J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978).
    [Crossref] [PubMed]
  17. C. W. Ulbrich, D. Atlas, “Extinction of visible and infrared radiation in rain: comparison of theory and experiment,” J. Atmos. Oceanogr. Technol. 2, 331–339 (1985).
    [Crossref]
  18. J. S. Marshall, W. M. Palmer, “The distribution of raindrops with size,” J. Meteorol. 5, 165–166 (1948).
    [Crossref]
  19. P. V. Hobbs, A. L. Rangno, “Ice particle concentrations in clouds,” J. Atmos. Sci. 42, 2523–2549 (1985).
    [Crossref]
  20. S. R. Pal, A. I. Carswell, “The polarization characteristics of lidar scattering from snow and ice crystals in the atmosphere,” J. Appl. Meteorol. 16, 70–80 (1977).
    [Crossref]
  21. K. Sassen, “Lidar observations of high plains thunderstorm precipitation,” J. Atmos. Sci. 34, 1444–1457 (1977).
    [Crossref]
  22. H. Shimizu, I. Matsui, N. Sugimoto, Y. Sasano, N. Takeuchi, N. Tanno, N. Saitoh, K. Yokoto “Short-time forecasting of snowfall by lidar,” Appl. Opt. 25, 2109–2114 (1986).
    [Crossref] [PubMed]
  23. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
    [Crossref] [PubMed]

1993 (1)

L. R. Bissonnette, D. L. Hutt, “Multiple scattering aerosol lidar inversion method,” Can. J. Phys. 71, 39–46 (1993).
[Crossref]

1992 (3)

L. R. Bissonnette, “Imaging through rain and fog.” Opt. Eng. 31, 1045–1052(1992).
[Crossref]

C. Werner, J. Streicher, H. Herrmann, H.-G. Dahn, “Multiple-scattering lidar experiments,” Opt. Eng. 31, 1731–1745 (1992).
[Crossref]

D. L. Hutt, L. R. Bissonnette, D. St. Germain, J. Oman, “Extinction of visible and infrared beams by falling snow,” Appl. Opt. 31, 5121–5131 (1992).
[Crossref] [PubMed]

1990 (1)

1988 (2)

1986 (1)

1985 (3)

S. R. Pal, A. I. Carswell, “Polarization anisotropy in lidar multiple scattering from atmospheric clouds,” Appl. Opt. 24, 3464–3470 (1985).
[Crossref] [PubMed]

C. W. Ulbrich, D. Atlas, “Extinction of visible and infrared radiation in rain: comparison of theory and experiment,” J. Atmos. Oceanogr. Technol. 2, 331–339 (1985).
[Crossref]

P. V. Hobbs, A. L. Rangno, “Ice particle concentrations in clouds,” J. Atmos. Sci. 42, 2523–2549 (1985).
[Crossref]

1981 (1)

1978 (1)

1977 (3)

R. J. Allen, C. M. R. Piatt, “Lidar for multiple backscattering and depolarization observations,” Appl. Opt. 16, 3193–3199(1977).
[Crossref] [PubMed]

S. R. Pal, A. I. Carswell, “The polarization characteristics of lidar scattering from snow and ice crystals in the atmosphere,” J. Appl. Meteorol. 16, 70–80 (1977).
[Crossref]

K. Sassen, “Lidar observations of high plains thunderstorm precipitation,” J. Atmos. Sci. 34, 1444–1457 (1977).
[Crossref]

1976 (1)

1973 (1)

1964 (1)

1948 (1)

J. S. Marshall, W. M. Palmer, “The distribution of raindrops with size,” J. Meteorol. 5, 165–166 (1948).
[Crossref]

Allen, R. J.

Atlas, D.

C. W. Ulbrich, D. Atlas, “Extinction of visible and infrared radiation in rain: comparison of theory and experiment,” J. Atmos. Oceanogr. Technol. 2, 331–339 (1985).
[Crossref]

Bissonnette, L. R.

Carswell, A. I.

Dahn, H.-G.

C. Werner, J. Streicher, H. Herrmann, H.-G. Dahn, “Multiple-scattering lidar experiments,” Opt. Eng. 31, 1731–1745 (1992).
[Crossref]

Dermendjian, D.

Duplain, G.

K. J. Snell, G. Duplain, A. Parent, B. Labranche, P. Galarneau, “Diffraction-limited Ndrglass and alexandrite lasers using graded reflectivity mirror unstable resonators,” in Solid State Lasers II, G. Dube, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1410, 99–106 (1991).

Durand, L.

D. L. Hutt, L. R. Bissonnette, L. Durand, “Multiscattered lidar returns from atmospheric aerosols,” in Propagation Engineering: Fourth in a Series, L. R. Bissonette, W. B. Miller, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1487, 250 (1991).

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Galarneau, P.

K. J. Snell, G. Duplain, A. Parent, B. Labranche, P. Galarneau, “Diffraction-limited Ndrglass and alexandrite lasers using graded reflectivity mirror unstable resonators,” in Solid State Lasers II, G. Dube, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1410, 99–106 (1991).

Germain, D. St.

Halldorsson, T.

Herrmann, H.

C. Werner, J. Streicher, H. Herrmann, H.-G. Dahn, “Multiple-scattering lidar experiments,” Opt. Eng. 31, 1731–1745 (1992).
[Crossref]

Hobbs, P. V.

P. V. Hobbs, A. L. Rangno, “Ice particle concentrations in clouds,” J. Atmos. Sci. 42, 2523–2549 (1985).
[Crossref]

Houston, J. D.

Hutt, D. L.

L. R. Bissonnette, D. L. Hutt, “Multiple scattering aerosol lidar inversion method,” Can. J. Phys. 71, 39–46 (1993).
[Crossref]

D. L. Hutt, L. R. Bissonnette, D. St. Germain, J. Oman, “Extinction of visible and infrared beams by falling snow,” Appl. Opt. 31, 5121–5131 (1992).
[Crossref] [PubMed]

L. R. Bissonnette, D. L. Hutt, “Multiple scattering lidar,” Appl. Opt. 29, 5045–5046 (1990).
[Crossref] [PubMed]

D. L. Hutt, L. R. Bissonnette, L. Durand, “Multiscattered lidar returns from atmospheric aerosols,” in Propagation Engineering: Fourth in a Series, L. R. Bissonette, W. B. Miller, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1487, 250 (1991).

Klett, J. D.

Labranche, B.

K. J. Snell, G. Duplain, A. Parent, B. Labranche, P. Galarneau, “Diffraction-limited Ndrglass and alexandrite lasers using graded reflectivity mirror unstable resonators,” in Solid State Lasers II, G. Dube, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1410, 99–106 (1991).

Langerholc, J.

Marshall, J. S.

J. S. Marshall, W. M. Palmer, “The distribution of raindrops with size,” J. Meteorol. 5, 165–166 (1948).
[Crossref]

Matsui, I.

Oman, J.

Pal, S. R.

Palmer, W. M.

J. S. Marshall, W. M. Palmer, “The distribution of raindrops with size,” J. Meteorol. 5, 165–166 (1948).
[Crossref]

Parent, A.

K. J. Snell, G. Duplain, A. Parent, B. Labranche, P. Galarneau, “Diffraction-limited Ndrglass and alexandrite lasers using graded reflectivity mirror unstable resonators,” in Solid State Lasers II, G. Dube, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1410, 99–106 (1991).

Piatt, C. M. R.

Rangno, A. L.

P. V. Hobbs, A. L. Rangno, “Ice particle concentrations in clouds,” J. Atmos. Sci. 42, 2523–2549 (1985).
[Crossref]

Saitoh, N.

Sasano, Y.

Sassen, K.

K. Sassen, “Lidar observations of high plains thunderstorm precipitation,” J. Atmos. Sci. 34, 1444–1457 (1977).
[Crossref]

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Shimizu, H.

Smith, R. B.

Snell, K. J.

K. J. Snell, G. Duplain, A. Parent, B. Labranche, P. Galarneau, “Diffraction-limited Ndrglass and alexandrite lasers using graded reflectivity mirror unstable resonators,” in Solid State Lasers II, G. Dube, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1410, 99–106 (1991).

Streicher, J.

C. Werner, J. Streicher, H. Herrmann, H.-G. Dahn, “Multiple-scattering lidar experiments,” Opt. Eng. 31, 1731–1745 (1992).
[Crossref]

Sugimoto, N.

Takeuchi, N.

Tanno, N.

Ulbrich, C. W.

C. W. Ulbrich, D. Atlas, “Extinction of visible and infrared radiation in rain: comparison of theory and experiment,” J. Atmos. Oceanogr. Technol. 2, 331–339 (1985).
[Crossref]

Ulitsky, A.

Werner, C.

C. Werner, J. Streicher, H. Herrmann, H.-G. Dahn, “Multiple-scattering lidar experiments,” Opt. Eng. 31, 1731–1745 (1992).
[Crossref]

Yokoto, K.

Appl. Opt. (12)

S. R. Pal, A. I. Carswell, “Polarization properties of lidar backscattering from clouds,” Appl. Opt. 12, 1530–1535 (1973).
[Crossref] [PubMed]

S. R. Pal, A. I. Carswell, “Multiple scattering in atmospheric clouds: lidar observation,” Appl. Opt. 15, 1990–1995 (1976).
[Crossref] [PubMed]

R. J. Allen, C. M. R. Piatt, “Lidar for multiple backscattering and depolarization observations,” Appl. Opt. 16, 3193–3199(1977).
[Crossref] [PubMed]

S. R. Pal, A. I. Carswell, “Polarization anisotropy in lidar multiple scattering from atmospheric clouds,” Appl. Opt. 24, 3464–3470 (1985).
[Crossref] [PubMed]

L. R. Bissonnette, “Multiscattered model for propagation of narrow light beams in aerosol media,” Appl. Opt. 27, 2478–2484(1988).
[Crossref] [PubMed]

L. R. Bissonnette, R. B. Smith, A. Ulitsky, J. D. Houston, A. I. Carswell, “Transmitted beam profiles, integrated backscatter and range resolved backscatter in inhomogeneous laboratory water droplet clouds,” Appl. Opt. 27, 2485–2494 (1988).
[Crossref] [PubMed]

D. L. Hutt, L. R. Bissonnette, D. St. Germain, J. Oman, “Extinction of visible and infrared beams by falling snow,” Appl. Opt. 31, 5121–5131 (1992).
[Crossref] [PubMed]

D. Dermendjian, “Scattering and polarization properties of water clouds and hazes in the visible and infrared,” Appl. Opt. 3, 187–196 (1964).
[Crossref]

L. R. Bissonnette, D. L. Hutt, “Multiple scattering lidar,” Appl. Opt. 29, 5045–5046 (1990).
[Crossref] [PubMed]

T. Halldorsson, J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978).
[Crossref] [PubMed]

H. Shimizu, I. Matsui, N. Sugimoto, Y. Sasano, N. Takeuchi, N. Tanno, N. Saitoh, K. Yokoto “Short-time forecasting of snowfall by lidar,” Appl. Opt. 25, 2109–2114 (1986).
[Crossref] [PubMed]

J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
[Crossref] [PubMed]

Can. J. Phys. (1)

L. R. Bissonnette, D. L. Hutt, “Multiple scattering aerosol lidar inversion method,” Can. J. Phys. 71, 39–46 (1993).
[Crossref]

J. Appl. Meteorol. (1)

S. R. Pal, A. I. Carswell, “The polarization characteristics of lidar scattering from snow and ice crystals in the atmosphere,” J. Appl. Meteorol. 16, 70–80 (1977).
[Crossref]

J. Atmos. Oceanogr. Technol. (1)

C. W. Ulbrich, D. Atlas, “Extinction of visible and infrared radiation in rain: comparison of theory and experiment,” J. Atmos. Oceanogr. Technol. 2, 331–339 (1985).
[Crossref]

J. Atmos. Sci. (2)

K. Sassen, “Lidar observations of high plains thunderstorm precipitation,” J. Atmos. Sci. 34, 1444–1457 (1977).
[Crossref]

P. V. Hobbs, A. L. Rangno, “Ice particle concentrations in clouds,” J. Atmos. Sci. 42, 2523–2549 (1985).
[Crossref]

J. Meteorol. (1)

J. S. Marshall, W. M. Palmer, “The distribution of raindrops with size,” J. Meteorol. 5, 165–166 (1948).
[Crossref]

Opt. Eng. (2)

L. R. Bissonnette, “Imaging through rain and fog.” Opt. Eng. 31, 1045–1052(1992).
[Crossref]

C. Werner, J. Streicher, H. Herrmann, H.-G. Dahn, “Multiple-scattering lidar experiments,” Opt. Eng. 31, 1731–1745 (1992).
[Crossref]

Other (3)

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

D. L. Hutt, L. R. Bissonnette, L. Durand, “Multiscattered lidar returns from atmospheric aerosols,” in Propagation Engineering: Fourth in a Series, L. R. Bissonette, W. B. Miller, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1487, 250 (1991).

K. J. Snell, G. Duplain, A. Parent, B. Labranche, P. Galarneau, “Diffraction-limited Ndrglass and alexandrite lasers using graded reflectivity mirror unstable resonators,” in Solid State Lasers II, G. Dube, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1410, 99–106 (1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Example of lidar returns calculated with the multiple-scattering propagation model.7 The medium is a homogeneous C1 cloud located at a range of 1 km from the lidar. The laser-pulse energy is 1 J, and the receiver half-angle FOV is 5 mrad. The total return and single-scattered components are shown for cloud extinctions of 20 and 50 km−1. The 50-km−1 returns are displaced downward by a factor of 10 for clarity.

Fig. 2
Fig. 2

Calculated ratio of total lidar signal to the single-scattered component for a homogeneous C1 cloud with different extinction values. The cloud is located at a range of 1 km.

Fig. 3
Fig. 3

Calculated ratio of total lidar signal to the single-scattered component for the homogeneous C1 cloud located at different distances from the lidar. The extinction is 20 km−1 for all returns.

Fig. 4
Fig. 4

Calculated ratio of total lidar signal to the single-scattered component for different cloud droplet size distributions. The smaller the average forward-scattering angle 〈θ+〉, the higher the multiply scattered contributions. The cloud is located 500 m from the lidar and the extinction is 20 km−1.

Fig. 5
Fig. 5

Calculated lidar returns from the homogeneous C1 cloud for different receiver half-angle FOV’s (θ R ). The cloud is located 1 km from the lidar with an extinction of 20 km−1. The laser energy is 1 J.

Fig. 6
Fig. 6

Lidar signal from different cloud penetrations as a function of receiver FOV θ R normalized by signal with FOV θ o = 1 mrad. The beam divergence is 0.5 mrad. The aerosol is a homogenous C1 cloud with an extinction of 20 km−1 located at a distance of 1 km.

Fig. 7
Fig. 7

Multiple element detector of MFOV lidar. The concentric-ring-shaped p-i-n photodiodes define four nested FOV’s. The outside diameter of the largest ring is 15 mm.

Fig. 8
Fig. 8

MFOV lidar transceiver. The Nd:glass laser is mounted on top of the receiver, and the beam is made coaxial with the receiver by means of two 45° mirrors.

Fig. 9
Fig. 9

MFOV lidar return from advection fog. The solid curve is the central FOV signal. The other curves are the simultaneously measured multiply scattered returns in the outer FOV’s.

Fig. 10
Fig. 10

Ratios of the outer FOV signals of Fig. 9 to the central FOV signal. The ratios indicate lateral spreading of the beam because of multiple scattering.

Fig. 11
Fig. 11

MFOV lidar return from inhomogeneous radiation fog.

Fig. 12
Fig. 12

MFOV lidar returns from homogeneous haze with an extinction coefficient of approximately 0.5 km−1.

Fig. 13
Fig. 13

Simulation of a MFOV lidar return from haze. The maritimo aerosol at 99% rolativo humidity12 was used in the calculation with an extinction coefficient of 0.5 km−1.

Fig. 14
Fig. 14

MFOV lidar returns from rain. The results are similar to the haze returns even though the scatterers are much larger.

Fig. 15
Fig. 15

Simulation of a MFOV lidar return from rain. The droplets have a Marshall and Palmer size distribution corresponding to a rain rate of 20 mm/hr. The extinction coefficient was 1.5 km−1.

Fig. 16
Fig. 16

MFOV lidar return from stratus clouds believed to have a high concentration of ice crystals. The outer FOV signals are small compared with the central FOV signal. The measurement was made at an elevation angle of 45°.

Fig. 17
Fig. 17

MFOV lidar return from stratus clouds believed to be composed of water droplets. The outer FOV signals build up with range in the cloud. The measurement was made at an elevation angle of 45°.

Fig. 18
Fig. 18

Simulation of a MFOV lidar return from a water droplet cloud with the C1 size distribution. The extinction coefficient of the cloud increases linearly from 0.005 km−1 at 500 m to 50 km−1 at 1000 m.

Fig. 19
Fig. 19

MFOV lidar return at an elevation angle of 45°, before snowfall. From 900 to 1300 m the signal is likely due to suspended ice crystals. Beyond 1300 m, the return is characteristic of water droplet clouds.

Fig. 20
Fig. 20

Simulated MFOV lidar return from a layer of 300-μm water spheres followed by a C1 cloud layer. The extinction coefficient of the spheres increases linearly from 0.1 km−1 at 900 m to 0.25 km−1 at 1300 m and then remains constant. The extinction coefficient of the C1 cloud increases linearly from 0 km−1 at 1300 m to 75 km−1 at 2000 m. The simulated return is similar to the measured return of Fig. 19.

Tables (4)

Tables Icon

Table 1 Fog and Cloud Characteristics at 1.06 μm

Tables Icon

Table 2 MFOV Lidar Source

Tables Icon

Table 3 MFOV Lidar Receiver

Tables Icon

Table 4 MFOV Lidar Signal Processing

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P t ( z ) = P ss ( z ) + P ms ( z ) .
P ss ( z ) = P o K c t 2 a z 2 β ( z ) exp ( 2 0 z α e ( z ) d z ) ,
A ( θ B , θ R ) = θ R 2 θ B 2 + θ R 2 .
r eff = 0 r σ s ( r / λ ) n ( r ) d r 0 σ s ( r / λ ) n ( r ) d r ,
θ + = 0 π/ 2 θ p ( θ ) d θ 0 π/ 2 p ( θ ) d θ ,
α e = 0 . 204 R 0 . 68 .

Metrics