Abstract

We have demonstrated low excess losses (1.9 dB at 660-nm wavelength) in a Y-branching plastic optical waveguide (POWG) that was fabricated using an injection-molding method. The waveguide had an amorphous vinyl polymer as the core and transparent polyolefin as the cladding. We then studied a method for isolating the excess loss in the Y-branching POWG, and with that method we estimated the lower limit of the loss to be 1.41 dB at 660 nm. The sample had a heat-resistant plastic optical fiber (POF) with a core composed of crosslinked poly(methyl methacrylate) (PMMA) copolymer, and a cladding composed of poly(tetrafluoroethylene-co-hexafluoropropylene). The POWG has sufficient reliability for ordinary uses below 100 °C. A model for a bidirectional wavelength-division multiplexing optical-communication system with the developed Y-branching POWG and the POF was also demonstrated.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Koike, “High-bandwidth graded-index polymer optical fiber,” Polymer 32, 1737–1745 (1991).
    [CrossRef]
  2. T. Kaino, Y. Katayama, “Polymers for optoelectronics,” Polym. Eng. Sci. 29, 1209–1214 (1989).
    [CrossRef]
  3. J. R. Cirillo, K. L. Jennings, M. A. Lynn, R. E. Steele, “Plastic optical fiber for automotive applications,” in Proceedings of the First Plastic Optical Fibers and Applications Conference (Information Gatekeepers, Boston, Mass., 1992, pp. 20–23.
  4. T. Kurokawa, N. Takato, Y. Katayama, “Polymer optical circuits for multimode optical fiber systems,” Appl. Opt. 19, 3124–3129 (1980).
    [CrossRef] [PubMed]
  5. Y. Koike, Y. Takezawa, Y. Ohtsuka, “New interfacialgel copolymerization technique for steric GRIN polymer optical waveguides and lens arrays,” Appl. Opt. 27, 486–491 (1988).
    [CrossRef] [PubMed]
  6. HPOF (manufactured by Hitachi Cable, Ltd.), a highly heat-resistant Hitachi plastic optical fiber, catalog no. EF-940.
  7. Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Empirical estimation method of intrinsic loss spectra in transparent amorphous polymers for plastic optical fibers,” J. Appl. Polym. Sci. 46, 1835–1841 (1992).
    [CrossRef]
  8. T. Kaino, “Preparation of plastic optical fibers for near-IR region transmission,” J. Polym. Sci. Polym. Chem. Ed. 25, 37–46 (1987).
    [CrossRef]
  9. F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324 (1953).
    [CrossRef]
  10. Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
    [CrossRef]
  11. K. L. Jennings, G. D. Miller, “Loss modeling of amodal fiber-to-fiber interconnects,” in Fiber Optic Systems for Mobile Platforms IV, N. E. Lewis, E. L. Moore, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1369, 36–43 (1990).
  12. Y. Masuda, T. Kakii, “Optical fiber and its applications VII. optical fiber technology, 2, optical fiber connector,” Kogaku 19, 326–336 (1990).
  13. Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, H. Asano, “Analysis of thermal degradation for plastic optical fibers,” J. Appl. Polym. Sci. 42, 2811–2817 (1991).
    [CrossRef]
  14. T. Sasayama, H. Asano, N. Taketani, “Multiplexed optical transmission system for automobiles using polymer fiber with high heat resistance,” in Fiber Optic Systems for Mobile Platforms II, Proc. Soc. Photo-Opt. Instrum. Eng. 989, 148–154 (1988).

1992 (1)

Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Empirical estimation method of intrinsic loss spectra in transparent amorphous polymers for plastic optical fibers,” J. Appl. Polym. Sci. 46, 1835–1841 (1992).
[CrossRef]

1991 (2)

Y. Koike, “High-bandwidth graded-index polymer optical fiber,” Polymer 32, 1737–1745 (1991).
[CrossRef]

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, H. Asano, “Analysis of thermal degradation for plastic optical fibers,” J. Appl. Polym. Sci. 42, 2811–2817 (1991).
[CrossRef]

1990 (1)

Y. Masuda, T. Kakii, “Optical fiber and its applications VII. optical fiber technology, 2, optical fiber connector,” Kogaku 19, 326–336 (1990).

1989 (2)

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

T. Kaino, Y. Katayama, “Polymers for optoelectronics,” Polym. Eng. Sci. 29, 1209–1214 (1989).
[CrossRef]

1988 (2)

T. Sasayama, H. Asano, N. Taketani, “Multiplexed optical transmission system for automobiles using polymer fiber with high heat resistance,” in Fiber Optic Systems for Mobile Platforms II, Proc. Soc. Photo-Opt. Instrum. Eng. 989, 148–154 (1988).

Y. Koike, Y. Takezawa, Y. Ohtsuka, “New interfacialgel copolymerization technique for steric GRIN polymer optical waveguides and lens arrays,” Appl. Opt. 27, 486–491 (1988).
[CrossRef] [PubMed]

1987 (1)

T. Kaino, “Preparation of plastic optical fibers for near-IR region transmission,” J. Polym. Sci. Polym. Chem. Ed. 25, 37–46 (1987).
[CrossRef]

1980 (1)

1953 (1)

F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324 (1953).
[CrossRef]

Asano, H.

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, H. Asano, “Analysis of thermal degradation for plastic optical fibers,” J. Appl. Polym. Sci. 42, 2811–2817 (1991).
[CrossRef]

T. Sasayama, H. Asano, N. Taketani, “Multiplexed optical transmission system for automobiles using polymer fiber with high heat resistance,” in Fiber Optic Systems for Mobile Platforms II, Proc. Soc. Photo-Opt. Instrum. Eng. 989, 148–154 (1988).

Cirillo, J. R.

J. R. Cirillo, K. L. Jennings, M. A. Lynn, R. E. Steele, “Plastic optical fiber for automotive applications,” in Proceedings of the First Plastic Optical Fibers and Applications Conference (Information Gatekeepers, Boston, Mass., 1992, pp. 20–23.

Jennings, K. L.

J. R. Cirillo, K. L. Jennings, M. A. Lynn, R. E. Steele, “Plastic optical fiber for automotive applications,” in Proceedings of the First Plastic Optical Fibers and Applications Conference (Information Gatekeepers, Boston, Mass., 1992, pp. 20–23.

K. L. Jennings, G. D. Miller, “Loss modeling of amodal fiber-to-fiber interconnects,” in Fiber Optic Systems for Mobile Platforms IV, N. E. Lewis, E. L. Moore, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1369, 36–43 (1990).

Kaino, T.

T. Kaino, Y. Katayama, “Polymers for optoelectronics,” Polym. Eng. Sci. 29, 1209–1214 (1989).
[CrossRef]

T. Kaino, “Preparation of plastic optical fibers for near-IR region transmission,” J. Polym. Sci. Polym. Chem. Ed. 25, 37–46 (1987).
[CrossRef]

Kakii, T.

Y. Masuda, T. Kakii, “Optical fiber and its applications VII. optical fiber technology, 2, optical fiber connector,” Kogaku 19, 326–336 (1990).

Katayama, Y.

Koike, Y.

Y. Koike, “High-bandwidth graded-index polymer optical fiber,” Polymer 32, 1737–1745 (1991).
[CrossRef]

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

Y. Koike, Y. Takezawa, Y. Ohtsuka, “New interfacialgel copolymerization technique for steric GRIN polymer optical waveguides and lens arrays,” Appl. Opt. 27, 486–491 (1988).
[CrossRef] [PubMed]

Kurokawa, T.

Lynn, M. A.

J. R. Cirillo, K. L. Jennings, M. A. Lynn, R. E. Steele, “Plastic optical fiber for automotive applications,” in Proceedings of the First Plastic Optical Fibers and Applications Conference (Information Gatekeepers, Boston, Mass., 1992, pp. 20–23.

Masuda, Y.

Y. Masuda, T. Kakii, “Optical fiber and its applications VII. optical fiber technology, 2, optical fiber connector,” Kogaku 19, 326–336 (1990).

Miller, G. D.

K. L. Jennings, G. D. Miller, “Loss modeling of amodal fiber-to-fiber interconnects,” in Fiber Optic Systems for Mobile Platforms IV, N. E. Lewis, E. L. Moore, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1369, 36–43 (1990).

Ohara, S.

Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Empirical estimation method of intrinsic loss spectra in transparent amorphous polymers for plastic optical fibers,” J. Appl. Polym. Sci. 46, 1835–1841 (1992).
[CrossRef]

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, H. Asano, “Analysis of thermal degradation for plastic optical fibers,” J. Appl. Polym. Sci. 42, 2811–2817 (1991).
[CrossRef]

Ohtsuka, Y.

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

Y. Koike, Y. Takezawa, Y. Ohtsuka, “New interfacialgel copolymerization technique for steric GRIN polymer optical waveguides and lens arrays,” Appl. Opt. 27, 486–491 (1988).
[CrossRef] [PubMed]

Sasayama, T.

T. Sasayama, H. Asano, N. Taketani, “Multiplexed optical transmission system for automobiles using polymer fiber with high heat resistance,” in Fiber Optic Systems for Mobile Platforms II, Proc. Soc. Photo-Opt. Instrum. Eng. 989, 148–154 (1988).

Steele, R. E.

J. R. Cirillo, K. L. Jennings, M. A. Lynn, R. E. Steele, “Plastic optical fiber for automotive applications,” in Proceedings of the First Plastic Optical Fibers and Applications Conference (Information Gatekeepers, Boston, Mass., 1992, pp. 20–23.

Takato, N.

Taketani, N.

Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Empirical estimation method of intrinsic loss spectra in transparent amorphous polymers for plastic optical fibers,” J. Appl. Polym. Sci. 46, 1835–1841 (1992).
[CrossRef]

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, H. Asano, “Analysis of thermal degradation for plastic optical fibers,” J. Appl. Polym. Sci. 42, 2811–2817 (1991).
[CrossRef]

T. Sasayama, H. Asano, N. Taketani, “Multiplexed optical transmission system for automobiles using polymer fiber with high heat resistance,” in Fiber Optic Systems for Mobile Platforms II, Proc. Soc. Photo-Opt. Instrum. Eng. 989, 148–154 (1988).

Takezawa, Y.

Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Empirical estimation method of intrinsic loss spectra in transparent amorphous polymers for plastic optical fibers,” J. Appl. Polym. Sci. 46, 1835–1841 (1992).
[CrossRef]

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, H. Asano, “Analysis of thermal degradation for plastic optical fibers,” J. Appl. Polym. Sci. 42, 2811–2817 (1991).
[CrossRef]

Y. Koike, Y. Takezawa, Y. Ohtsuka, “New interfacialgel copolymerization technique for steric GRIN polymer optical waveguides and lens arrays,” Appl. Opt. 27, 486–491 (1988).
[CrossRef] [PubMed]

Tanio, N.

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

Tanno, S.

Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Empirical estimation method of intrinsic loss spectra in transparent amorphous polymers for plastic optical fibers,” J. Appl. Polym. Sci. 46, 1835–1841 (1992).
[CrossRef]

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, H. Asano, “Analysis of thermal degradation for plastic optical fibers,” J. Appl. Polym. Sci. 42, 2811–2817 (1991).
[CrossRef]

Urbach, F.

F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324 (1953).
[CrossRef]

Appl. Opt. (2)

Fiber Optic Systems for Mobile Platforms II (1)

T. Sasayama, H. Asano, N. Taketani, “Multiplexed optical transmission system for automobiles using polymer fiber with high heat resistance,” in Fiber Optic Systems for Mobile Platforms II, Proc. Soc. Photo-Opt. Instrum. Eng. 989, 148–154 (1988).

J. Appl. Polym. Sci. (2)

Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Empirical estimation method of intrinsic loss spectra in transparent amorphous polymers for plastic optical fibers,” J. Appl. Polym. Sci. 46, 1835–1841 (1992).
[CrossRef]

Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, H. Asano, “Analysis of thermal degradation for plastic optical fibers,” J. Appl. Polym. Sci. 42, 2811–2817 (1991).
[CrossRef]

J. Polym. Sci. Polym. Chem. Ed. (1)

T. Kaino, “Preparation of plastic optical fibers for near-IR region transmission,” J. Polym. Sci. Polym. Chem. Ed. 25, 37–46 (1987).
[CrossRef]

Kogaku (1)

Y. Masuda, T. Kakii, “Optical fiber and its applications VII. optical fiber technology, 2, optical fiber connector,” Kogaku 19, 326–336 (1990).

Macromolecules (1)

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

Phys. Rev. (1)

F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324 (1953).
[CrossRef]

Polym. Eng. Sci. (1)

T. Kaino, Y. Katayama, “Polymers for optoelectronics,” Polym. Eng. Sci. 29, 1209–1214 (1989).
[CrossRef]

Polymer (1)

Y. Koike, “High-bandwidth graded-index polymer optical fiber,” Polymer 32, 1737–1745 (1991).
[CrossRef]

Other (3)

HPOF (manufactured by Hitachi Cable, Ltd.), a highly heat-resistant Hitachi plastic optical fiber, catalog no. EF-940.

K. L. Jennings, G. D. Miller, “Loss modeling of amodal fiber-to-fiber interconnects,” in Fiber Optic Systems for Mobile Platforms IV, N. E. Lewis, E. L. Moore, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1369, 36–43 (1990).

J. R. Cirillo, K. L. Jennings, M. A. Lynn, R. E. Steele, “Plastic optical fiber for automotive applications,” in Proceedings of the First Plastic Optical Fibers and Applications Conference (Information Gatekeepers, Boston, Mass., 1992, pp. 20–23.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Flow diagram of the fabrication process for a Y-branching plastic optical waveguide, POWG. TPO, transparent polyolefin; AVP, amorphous vinyl polymer; POF, plastic optical fiber.

Fig. 2
Fig. 2

Loss factors composing the excess loss for POWG.

Fig. 3
Fig. 3

Relation between L 6 and misalignment between the POF and the POWG.

Fig. 4
Fig. 4

Time dependence of the increase in excess loss for a Y-branching POWG.

Fig. 5
Fig. 5

Model of a bidirectional wavelength-division multiplexing optical communication system. E/O: Electrical/Optical transmitter; O/E: Optical/Electrical transmitter.

Fig. 6
Fig. 6

Level diagram of an optical local-area network (LAN) system with a Y-branching POWG with a POF.

Fig. 7
Fig. 7

Model of a multibranching optical LAN system.

Tables (2)

Tables Icon

Table 1 Separation of Excess Loss for a Y-branching POWG a

Tables Icon

Table 2 AVP Absorption Losses Before and After Heating

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

α = 10 log ( I a + I b I o ) .
A = c ,
α e = 10 A = 10 c ,
α e = A o exp ( B o λ ) ,
α R = 4 . 342 × τ .
L 2 = α e = 3 . 37 × 10 7 exp ( 5 . 81 × 10 3 λ ) .
L 3 = α R = 4 . 342 τ,
L 4 = 10 log [ 1 ( n 1 n 2 ) 2 ( n 1 + n 2 ) 2 ] ,
L 7 = 10 log ( NA 2 NA 1 ) , ( NA 1 NA 2 ) ,
L 5 = 10 log ( 1 NA × Δ l 4 a ) ,
L 6 = 10 log { 1 Δ s 2 π a 2 ( 4 a 2 Δ s 2 ) 1 / 2 2 π sin 1 ( Δ s 2 a ) } ,
L 1 = α ( L 2 + L 3 + L 4 + L 5 + L 6 + L 7 ) .
α e ( dB ) = 1 . 22 × 10 5 exp ( 5 . 76 × 10 3 λ ) ,

Metrics