Abstract

We report theoretical modeling for a diode-side-pumped Nd:YAG laser in which the laser rod is fixed in a solid nonfocusing (prismatic) light collector. The geometry provides for pumping the rod from four sides, which gives a relatively uniform gain profile across the transverse section of the rod and enables a high tolerance of the laser output to resonator and pump diode misalignment. The numerical model is developed to illustrate how the pumping uniformity and the transfer efficiency are affected when changes in the collector and lasing materials are made. We use small-signal gain measurements to test the predictions of the model and to examine the extent to which surface scattering from the rough rod barrel further spatially averages the deposited pump energy. The effects of the different refractive indices of the rod, collector, and fixant and the absorption properties of the laser material on optical transfer efficiencies are discussed.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Burham, A. D. Hays, “High-power diode-array-pumped frequency-doubled cw Nd:YAG laser,” Opt. Lett. 14, 27–29 (1989).
    [CrossRef]
  2. F. Hanson, D. Haddock, “Laser diode side pumping of neodymium rods,” Appl. Opt. 27, 80–83 (1988).
    [CrossRef] [PubMed]
  3. T. H. Allik, W. W. Hovis, D. P. Caffey, V. King, “Efficient diode-array-pumped Nd:YAG and Nd:Lp:YAG lasers,” Opt. Lett. 14, 116–118 (1989).
    [CrossRef] [PubMed]
  4. D. Welford, D. M. Rines, B. J. Dinerman, “Efficient TEM∞,-mode operation of a laser-diode side-pumped Nd:YAG laser,” Opt. Lett. 16, 1850–1852 (1991).
    [CrossRef] [PubMed]
  5. L. R. Mashall, A. Kaz, R. L. Burnham, “Highly efficient TEM∞ operation of transversely diode-pumped Nd:YAG lasers,” Opt. Lett. 17, 186–188 (1992).
    [CrossRef]
  6. J. M. Dawes, S. D. Jackson, Y. Cai, P. Dekker, J. A. Piper, “Diode-pumped Nd:YAG lasers using solid nonfocusing collector geometry,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), p. 219.
  7. D. S. Bethune, “Dye cell design for high-power low-divergence eximer-pumped dye lasers,” Appl. Opt. 20, 1897–1899 (1981).
    [CrossRef] [PubMed]
  8. S. R. Bowman, B. J. Feldman, J. M. McMahon, A. P. Bowman, D. Scarl, “Laser techniques and frequency conversion for a neodymium-based blue communication transmitter,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), p. 108.
  9. G. R. Hadley, A. Owyoung, P. Esherick, J. P. Hohimer, “Numerical simulation and experimental studies of longitudinally excited miniature solid-state lasers,” Appl. Opt. 27, 819–827 (1988).
    [CrossRef] [PubMed]
  10. T. Y. Fan, A. Sanchez, “Pump source requirements for end-pumped lasers,” IEEE J. Quantum Electron. 26, 311–316 (1990).
    [CrossRef]
  11. P. Laporta, M. Brussard, “Design criteria for mode size optimization in diode pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319–2326 (1991).
    [CrossRef]
  12. S. R. Chin, J. W. Pierce, H. Heckscher, “Low-threshold transversely excited NdP3O14 laser,” Appl. Opt. 15, 1444–1449 (1976).
    [CrossRef]
  13. K. Kubodera, K. Otsuka, “Diode-pumped miniature solid-state laser: design considerations,” Appl. Opt. 16, 2747–2752 (1977).
    [CrossRef] [PubMed]
  14. J. Budin, M. Neubauer, M. Rondot, “On the design of neodymium miniature lasers,” IEEE J. Quantum Electron. QE-14, 831–839 (1978).
    [CrossRef]
  15. D. G. Hall, J. D. Spear-Zino, H. G. Koenig, R. R. Rice, J. K. Powers, G. H. Burkhart, P. D. Bear, “Edge coupling of a GaALAs DH laser diode to a planar Ti:LiNbO3 waveguide,” Appl. Opt. 19, 1847–1852 (1980).
    [CrossRef] [PubMed]
  16. H. H. Zenzie, M. G. Knights, J. R. Mosto, E. P. Chicklis, “Scalable diode array pumped Nd rod laser,” in Advanced Solid-State Lasers, H. P. Jenssen, G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), p. 44.
  17. T. Y. Fan, R. L. Byer, “Modeling and cw operation of a quasi-three-level 946-nm Nd:YAG laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).
  18. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1989), Chap. 8, p. 401.
  19. N. P. Barnes, D. J. Gettemy, L. Esterowitz, R. E. Allen, “Comparison of Nd 1.06 and 1.33 μm operation in various hosts,” IEEE J. Quantum Electron. QE-23, 1434–1451 (1987).
    [CrossRef]
  20. J. T. Verdeyen, “Laser oscillation and amplification,” in Laser Electronics (Prentice-Hall, Englewood Cliffs, N.J., 1989), pp. 183–218.
  21. W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, Berlin, 1988), Chap. 2, p. 49.
  22. F. E. Hovis, M. Stuff, C. J. Kennedy, B. Vivian, “Lower level relaxation of Nd:YAG,” IEEE J. Quantum Electron. 28, 39–42 (1992).
    [CrossRef]
  23. W. E. Martin, D. Milam, “Gain saturation in Nd-doped laser materials,” IEEE J. Quantum Electron. 18, 1155–1163 (1982).
    [CrossRef]
  24. M. S. Mangir, D. A. Rockwell, “Measurements of heating and energy storage in flash-pumpd Nd:YAG and Nd-doped phosphate laser glases,” IEEE J. Quantum Electron. QE-22, 574–580 (1986).
    [CrossRef]
  25. L. E. Holder, C. Kennedy, L. Long, G. Dubé, “One joule per Q-switched pulse diode-pumped laser,” IEEE J. Quantum Electron. 28, 986–991 (1992).
    [CrossRef]

1992 (3)

L. R. Mashall, A. Kaz, R. L. Burnham, “Highly efficient TEM∞ operation of transversely diode-pumped Nd:YAG lasers,” Opt. Lett. 17, 186–188 (1992).
[CrossRef]

F. E. Hovis, M. Stuff, C. J. Kennedy, B. Vivian, “Lower level relaxation of Nd:YAG,” IEEE J. Quantum Electron. 28, 39–42 (1992).
[CrossRef]

L. E. Holder, C. Kennedy, L. Long, G. Dubé, “One joule per Q-switched pulse diode-pumped laser,” IEEE J. Quantum Electron. 28, 986–991 (1992).
[CrossRef]

1991 (2)

P. Laporta, M. Brussard, “Design criteria for mode size optimization in diode pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319–2326 (1991).
[CrossRef]

D. Welford, D. M. Rines, B. J. Dinerman, “Efficient TEM∞,-mode operation of a laser-diode side-pumped Nd:YAG laser,” Opt. Lett. 16, 1850–1852 (1991).
[CrossRef] [PubMed]

1990 (1)

T. Y. Fan, A. Sanchez, “Pump source requirements for end-pumped lasers,” IEEE J. Quantum Electron. 26, 311–316 (1990).
[CrossRef]

1989 (2)

1988 (2)

1987 (2)

T. Y. Fan, R. L. Byer, “Modeling and cw operation of a quasi-three-level 946-nm Nd:YAG laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).

N. P. Barnes, D. J. Gettemy, L. Esterowitz, R. E. Allen, “Comparison of Nd 1.06 and 1.33 μm operation in various hosts,” IEEE J. Quantum Electron. QE-23, 1434–1451 (1987).
[CrossRef]

1986 (1)

M. S. Mangir, D. A. Rockwell, “Measurements of heating and energy storage in flash-pumpd Nd:YAG and Nd-doped phosphate laser glases,” IEEE J. Quantum Electron. QE-22, 574–580 (1986).
[CrossRef]

1982 (1)

W. E. Martin, D. Milam, “Gain saturation in Nd-doped laser materials,” IEEE J. Quantum Electron. 18, 1155–1163 (1982).
[CrossRef]

1981 (1)

1980 (1)

1978 (1)

J. Budin, M. Neubauer, M. Rondot, “On the design of neodymium miniature lasers,” IEEE J. Quantum Electron. QE-14, 831–839 (1978).
[CrossRef]

1977 (1)

1976 (1)

Allen, R. E.

N. P. Barnes, D. J. Gettemy, L. Esterowitz, R. E. Allen, “Comparison of Nd 1.06 and 1.33 μm operation in various hosts,” IEEE J. Quantum Electron. QE-23, 1434–1451 (1987).
[CrossRef]

Allik, T. H.

Barnes, N. P.

N. P. Barnes, D. J. Gettemy, L. Esterowitz, R. E. Allen, “Comparison of Nd 1.06 and 1.33 μm operation in various hosts,” IEEE J. Quantum Electron. QE-23, 1434–1451 (1987).
[CrossRef]

Bear, P. D.

Bethune, D. S.

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1989), Chap. 8, p. 401.

Bowman, A. P.

S. R. Bowman, B. J. Feldman, J. M. McMahon, A. P. Bowman, D. Scarl, “Laser techniques and frequency conversion for a neodymium-based blue communication transmitter,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), p. 108.

Bowman, S. R.

S. R. Bowman, B. J. Feldman, J. M. McMahon, A. P. Bowman, D. Scarl, “Laser techniques and frequency conversion for a neodymium-based blue communication transmitter,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), p. 108.

Brussard, M.

P. Laporta, M. Brussard, “Design criteria for mode size optimization in diode pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319–2326 (1991).
[CrossRef]

Budin, J.

J. Budin, M. Neubauer, M. Rondot, “On the design of neodymium miniature lasers,” IEEE J. Quantum Electron. QE-14, 831–839 (1978).
[CrossRef]

Burham, R.

Burkhart, G. H.

Burnham, R. L.

Byer, R. L.

T. Y. Fan, R. L. Byer, “Modeling and cw operation of a quasi-three-level 946-nm Nd:YAG laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).

Caffey, D. P.

Cai, Y.

J. M. Dawes, S. D. Jackson, Y. Cai, P. Dekker, J. A. Piper, “Diode-pumped Nd:YAG lasers using solid nonfocusing collector geometry,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), p. 219.

Chicklis, E. P.

H. H. Zenzie, M. G. Knights, J. R. Mosto, E. P. Chicklis, “Scalable diode array pumped Nd rod laser,” in Advanced Solid-State Lasers, H. P. Jenssen, G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), p. 44.

Chin, S. R.

Dawes, J. M.

J. M. Dawes, S. D. Jackson, Y. Cai, P. Dekker, J. A. Piper, “Diode-pumped Nd:YAG lasers using solid nonfocusing collector geometry,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), p. 219.

Dekker, P.

J. M. Dawes, S. D. Jackson, Y. Cai, P. Dekker, J. A. Piper, “Diode-pumped Nd:YAG lasers using solid nonfocusing collector geometry,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), p. 219.

Dinerman, B. J.

Dubé, G.

L. E. Holder, C. Kennedy, L. Long, G. Dubé, “One joule per Q-switched pulse diode-pumped laser,” IEEE J. Quantum Electron. 28, 986–991 (1992).
[CrossRef]

Esherick, P.

Esterowitz, L.

N. P. Barnes, D. J. Gettemy, L. Esterowitz, R. E. Allen, “Comparison of Nd 1.06 and 1.33 μm operation in various hosts,” IEEE J. Quantum Electron. QE-23, 1434–1451 (1987).
[CrossRef]

Fan, T. Y.

T. Y. Fan, A. Sanchez, “Pump source requirements for end-pumped lasers,” IEEE J. Quantum Electron. 26, 311–316 (1990).
[CrossRef]

T. Y. Fan, R. L. Byer, “Modeling and cw operation of a quasi-three-level 946-nm Nd:YAG laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).

Feldman, B. J.

S. R. Bowman, B. J. Feldman, J. M. McMahon, A. P. Bowman, D. Scarl, “Laser techniques and frequency conversion for a neodymium-based blue communication transmitter,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), p. 108.

Gettemy, D. J.

N. P. Barnes, D. J. Gettemy, L. Esterowitz, R. E. Allen, “Comparison of Nd 1.06 and 1.33 μm operation in various hosts,” IEEE J. Quantum Electron. QE-23, 1434–1451 (1987).
[CrossRef]

Haddock, D.

Hadley, G. R.

Hall, D. G.

Hanson, F.

Hays, A. D.

Heckscher, H.

Hohimer, J. P.

Holder, L. E.

L. E. Holder, C. Kennedy, L. Long, G. Dubé, “One joule per Q-switched pulse diode-pumped laser,” IEEE J. Quantum Electron. 28, 986–991 (1992).
[CrossRef]

Hovis, F. E.

F. E. Hovis, M. Stuff, C. J. Kennedy, B. Vivian, “Lower level relaxation of Nd:YAG,” IEEE J. Quantum Electron. 28, 39–42 (1992).
[CrossRef]

Hovis, W. W.

Jackson, S. D.

J. M. Dawes, S. D. Jackson, Y. Cai, P. Dekker, J. A. Piper, “Diode-pumped Nd:YAG lasers using solid nonfocusing collector geometry,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), p. 219.

Kaz, A.

Kennedy, C.

L. E. Holder, C. Kennedy, L. Long, G. Dubé, “One joule per Q-switched pulse diode-pumped laser,” IEEE J. Quantum Electron. 28, 986–991 (1992).
[CrossRef]

Kennedy, C. J.

F. E. Hovis, M. Stuff, C. J. Kennedy, B. Vivian, “Lower level relaxation of Nd:YAG,” IEEE J. Quantum Electron. 28, 39–42 (1992).
[CrossRef]

King, V.

Knights, M. G.

H. H. Zenzie, M. G. Knights, J. R. Mosto, E. P. Chicklis, “Scalable diode array pumped Nd rod laser,” in Advanced Solid-State Lasers, H. P. Jenssen, G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), p. 44.

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, Berlin, 1988), Chap. 2, p. 49.

Koenig, H. G.

Kubodera, K.

Laporta, P.

P. Laporta, M. Brussard, “Design criteria for mode size optimization in diode pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319–2326 (1991).
[CrossRef]

Long, L.

L. E. Holder, C. Kennedy, L. Long, G. Dubé, “One joule per Q-switched pulse diode-pumped laser,” IEEE J. Quantum Electron. 28, 986–991 (1992).
[CrossRef]

Mangir, M. S.

M. S. Mangir, D. A. Rockwell, “Measurements of heating and energy storage in flash-pumpd Nd:YAG and Nd-doped phosphate laser glases,” IEEE J. Quantum Electron. QE-22, 574–580 (1986).
[CrossRef]

Martin, W. E.

W. E. Martin, D. Milam, “Gain saturation in Nd-doped laser materials,” IEEE J. Quantum Electron. 18, 1155–1163 (1982).
[CrossRef]

Mashall, L. R.

McMahon, J. M.

S. R. Bowman, B. J. Feldman, J. M. McMahon, A. P. Bowman, D. Scarl, “Laser techniques and frequency conversion for a neodymium-based blue communication transmitter,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), p. 108.

Milam, D.

W. E. Martin, D. Milam, “Gain saturation in Nd-doped laser materials,” IEEE J. Quantum Electron. 18, 1155–1163 (1982).
[CrossRef]

Mosto, J. R.

H. H. Zenzie, M. G. Knights, J. R. Mosto, E. P. Chicklis, “Scalable diode array pumped Nd rod laser,” in Advanced Solid-State Lasers, H. P. Jenssen, G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), p. 44.

Neubauer, M.

J. Budin, M. Neubauer, M. Rondot, “On the design of neodymium miniature lasers,” IEEE J. Quantum Electron. QE-14, 831–839 (1978).
[CrossRef]

Otsuka, K.

Owyoung, A.

Pierce, J. W.

Piper, J. A.

J. M. Dawes, S. D. Jackson, Y. Cai, P. Dekker, J. A. Piper, “Diode-pumped Nd:YAG lasers using solid nonfocusing collector geometry,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), p. 219.

Powers, J. K.

Rice, R. R.

Rines, D. M.

Rockwell, D. A.

M. S. Mangir, D. A. Rockwell, “Measurements of heating and energy storage in flash-pumpd Nd:YAG and Nd-doped phosphate laser glases,” IEEE J. Quantum Electron. QE-22, 574–580 (1986).
[CrossRef]

Rondot, M.

J. Budin, M. Neubauer, M. Rondot, “On the design of neodymium miniature lasers,” IEEE J. Quantum Electron. QE-14, 831–839 (1978).
[CrossRef]

Sanchez, A.

T. Y. Fan, A. Sanchez, “Pump source requirements for end-pumped lasers,” IEEE J. Quantum Electron. 26, 311–316 (1990).
[CrossRef]

Scarl, D.

S. R. Bowman, B. J. Feldman, J. M. McMahon, A. P. Bowman, D. Scarl, “Laser techniques and frequency conversion for a neodymium-based blue communication transmitter,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), p. 108.

Spear-Zino, J. D.

Stuff, M.

F. E. Hovis, M. Stuff, C. J. Kennedy, B. Vivian, “Lower level relaxation of Nd:YAG,” IEEE J. Quantum Electron. 28, 39–42 (1992).
[CrossRef]

Verdeyen, J. T.

J. T. Verdeyen, “Laser oscillation and amplification,” in Laser Electronics (Prentice-Hall, Englewood Cliffs, N.J., 1989), pp. 183–218.

Vivian, B.

F. E. Hovis, M. Stuff, C. J. Kennedy, B. Vivian, “Lower level relaxation of Nd:YAG,” IEEE J. Quantum Electron. 28, 39–42 (1992).
[CrossRef]

Welford, D.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1989), Chap. 8, p. 401.

Zenzie, H. H.

H. H. Zenzie, M. G. Knights, J. R. Mosto, E. P. Chicklis, “Scalable diode array pumped Nd rod laser,” in Advanced Solid-State Lasers, H. P. Jenssen, G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), p. 44.

Appl. Opt. (6)

IEEE J. Quantum Electron. (9)

J. Budin, M. Neubauer, M. Rondot, “On the design of neodymium miniature lasers,” IEEE J. Quantum Electron. QE-14, 831–839 (1978).
[CrossRef]

T. Y. Fan, R. L. Byer, “Modeling and cw operation of a quasi-three-level 946-nm Nd:YAG laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).

N. P. Barnes, D. J. Gettemy, L. Esterowitz, R. E. Allen, “Comparison of Nd 1.06 and 1.33 μm operation in various hosts,” IEEE J. Quantum Electron. QE-23, 1434–1451 (1987).
[CrossRef]

T. Y. Fan, A. Sanchez, “Pump source requirements for end-pumped lasers,” IEEE J. Quantum Electron. 26, 311–316 (1990).
[CrossRef]

P. Laporta, M. Brussard, “Design criteria for mode size optimization in diode pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319–2326 (1991).
[CrossRef]

F. E. Hovis, M. Stuff, C. J. Kennedy, B. Vivian, “Lower level relaxation of Nd:YAG,” IEEE J. Quantum Electron. 28, 39–42 (1992).
[CrossRef]

W. E. Martin, D. Milam, “Gain saturation in Nd-doped laser materials,” IEEE J. Quantum Electron. 18, 1155–1163 (1982).
[CrossRef]

M. S. Mangir, D. A. Rockwell, “Measurements of heating and energy storage in flash-pumpd Nd:YAG and Nd-doped phosphate laser glases,” IEEE J. Quantum Electron. QE-22, 574–580 (1986).
[CrossRef]

L. E. Holder, C. Kennedy, L. Long, G. Dubé, “One joule per Q-switched pulse diode-pumped laser,” IEEE J. Quantum Electron. 28, 986–991 (1992).
[CrossRef]

Opt. Lett. (4)

Other (6)

J. M. Dawes, S. D. Jackson, Y. Cai, P. Dekker, J. A. Piper, “Diode-pumped Nd:YAG lasers using solid nonfocusing collector geometry,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), p. 219.

S. R. Bowman, B. J. Feldman, J. M. McMahon, A. P. Bowman, D. Scarl, “Laser techniques and frequency conversion for a neodymium-based blue communication transmitter,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), p. 108.

J. T. Verdeyen, “Laser oscillation and amplification,” in Laser Electronics (Prentice-Hall, Englewood Cliffs, N.J., 1989), pp. 183–218.

W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, Berlin, 1988), Chap. 2, p. 49.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1989), Chap. 8, p. 401.

H. H. Zenzie, M. G. Knights, J. R. Mosto, E. P. Chicklis, “Scalable diode array pumped Nd rod laser,” in Advanced Solid-State Lasers, H. P. Jenssen, G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), p. 44.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram (a) of the collimated pumping arrangement and (b) of the uncollimated pumping arrangement.

Fig. 2
Fig. 2

Detail of the collector geometry.

Fig. 3
Fig. 3

(a) Deposited-energy profile for collimated illumination with the BK7 prism collector for n 2 = 1.56. The cross section of the rod is in the xy plane, and the deposited energy is on the z axis, (b) Deposited-energy profile for collimated illumination incorporating peripheral scattering at the rod barrel surface, 2θ s = 150°.

Fig. 4
Fig. 4

Model and experimental gain results for the collimated geometry with 70 W of diode power incident at the BK7 prism hypotenuse, n 2 = 1.56. Smooth rod barrel results are represented by the solid curve and the scattering extension results by the dashed curve. The vertical dashed lines represent the rod boundaries.

Fig. 5
Fig. 5

(a) Deposited-energy profile for uncollimated illumination for a smooth barrel surface for d = 1 mm and n 2 = 1.56. (b) Deposited-energy profile within the rod for uncollimated illumination with peripheral scattering incorporated (d = 1 mm, n 2 = 1.56, and 2θ s , = 150°).

Fig. 6
Fig. 6

(a) Gain profiles for a prism–diode separation of 1 mm. The solid curve represents results from the model for a smooth barrel, and the dashed curve represents results from the surface scattering extension with 2θ s = 150°. Data from the small-signal gain experiment using the 100-W quasi-cw diode laser are given for comparison for n 2 = 1.56. (b) Gain profiles for a prism–diode separation of 10 mm. The solid curve represents results from the model for a smooth barrel; the dashed curve represents results from the scattering extension with 2θ s = 150°. Data from the small-signal gain experiment using the 100-W quasi-cw diode laser again are given for comparison for n 2 = 1.56.

Fig. 7
Fig. 7

The experimental setup for the measurement of small-signal gain.

Fig. 8
Fig. 8

Reflected 632.8-nm laser radiation from the microrough barrel surface. The angle of incidence of the laser beam onto this surface is 60°. Zero degrees on the abscissa is the angle representing the specular reflection direction.

Fig. 9
Fig. 9

Transfer efficiencies TE1 and TE2 versus the refractive index of the fixant for collimated and uncollimated illumination. The results relate to a Nd:YAG rod and BK7 glass prism combination. Solid curves represent results for TE1; the dashed curve represents results for TE2 for collimated illumination.

Fig. 10
Fig. 10

FOM versus the refractive index of the fixant for both collimated and uncollimated illumination. The results relate to a Nd:YAG rod and BK7 glass prism combination.

Tables (2)

Tables Icon

Table 1 Collector Refractive Indices and Nd:YAG Material Properties

Tables Icon

Table 2 Calculations from the Model for Uncollimated Illumination

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

t 2 ( av ) = W t 2 + W t 2 ,
I T = I o cos θ r cos θ i t 2 ( av ) ,
I i + 1 = I i exp [ Δ L 0 α ( λ ) ρ ( λ ) d λ ] ,
f b = g b exp ( E b k T ) Z 2 ,
f a = g a exp ( E a k T ) Z 1 ,
d N 2 d t = η Q P abs h ν p N 2 τ 2 ,
d N 1 d t = N 2 τ 21 ( N 1 B 1 N 0 ) τ 1 ,
G 0 = exp { [ f b N 2 ( g 2 / g 1 ) f a N 1 ] σ se l } ,
FOM = ρ p + ρ c 2 ( ρ p ρ c ) ,

Metrics