Abstract

Beam quality (BQ) of a 4-cm copper-vapor laser (CVL) with unstable resonators of different magnifications was characterized based on time-resolved far-field measurement. It was found that the BQ improvement after each round trip of the cavity cannot be predicted correctly from resonator theory. With a cavity Fresnel number of ~ 300, the achievable CVL BQ at the later part of the pulse was limited to approximately 4 times diffraction limited (×DL), even with a cavity magnification of 130. A pronounced temporal BQ oscillation, which is synchronized with the temporal pulse modulation, was also observed throughout the entire pulse. Examination of the temporal evolution of the far-field spot with use of a gated camera revealed that the strong presence of amplified spontaneous emission (ASE) in the cavity during the entire laser pulse severely limited the achievable BQ because of consecutive cavity feedback that included this highly divergent ASE. BQ deterioration caused by intense ASE throughout the pulse was reduced when a cavity with a smaller Fresnel number was used.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kupfer, H. Bergmann, “Material processing with copper lasers,” in CO2 Lasers and Applications II, H. Opower, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1276, 411–425 (1991).
  2. M. C. Gokay, “Industrial applications of metal vapor lasers,” in Gas and Metal Vapor Lasers and Applications, J. J. Kim, F. K. Tittel, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1412, 28–31 (1991).
  3. L. Holmes, “Metal vapor lasers: Special capabilities for applications,” Laser Focus 22(12), 76–80 (1986).
  4. V. V. Zubov, N. A. Lyabin, A. D. Chursin, “A copper laser with high-stable single-beam radiation and controlled divergence,” Sov. J. Quantum Electron. 15, 1947–1954 (1988).
  5. M. Lando, D. Belker, A. Lerrer, H. Lotem, A. Dikman, G. Bialolanker, S. Lavi, S. Gabay, “A modified off-axis unstable resonator for copper vapor laser,” in Gas and Metal Vapor Lasers and Applications, J. J. Kim, F. K. Tittel, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1412, 19–26 (1991).
  6. R. S. Hargrove, R. Grove, T. Kan, “Copper vapor laser unstable resonator oscillator and oscillator-amplifier characteristics,” IEEE J. Quantum Electron. QE-15, 1228–1233 (1979).
    [CrossRef]
  7. M. Amit, S. Lavi, G. Erez, E. Miron, “Temporal and spatial properties of an oscillator-amplifier copper vapor laser,” Opt. Commun. 62, 110–114 (1987).
    [CrossRef]
  8. P. G. Gobbi, G. C. Reali, “A novel unstable resonator configuration with a self filtering aperture,” Opt. Commun. 52, 195–198 (1984).
    [CrossRef]
  9. R. Bhatnagar, S. K. Dixit, B. Singh, S. V. Nakhe, “Performance of a copper vapor laser with self-filtering unstable resonator,” Opt. Commun. 74, 93–96 (1989).
    [CrossRef]
  10. V. Magni, S. D. Silvestri, A. Cybo-Ottone, “Resonators with variable reflectivity mirrors,” in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Hilger, Bristol, UK, 1989).
  11. D. W. Coutts, M. D. Ainsworth, J. A. Piper, “Observation of the temporal evolution of transverse coherence in copper vapor lasers,” Opt. Commun. 87, 245–248 (1992).
    [CrossRef]
  12. T. Omatsu, K. Kuroda, “Time-resolved measurement of spatial coherence of a copper vapor laser using a reversal shear interferometer,” Opt. Commun. 87, 278–286 (1992).
    [CrossRef]
  13. T. Omatsu, K. Kuroda, T. Shimura, M. Chihara, M. Itoh, I. Ogura, “Time-resolved measurement of beam divergence of a copper vapor laser using a saturable absorber,” Opt. Commun. 85, 343–349 (1991).
    [CrossRef]
  14. J. M. Eggleston, “Theory of output beam divergence in pulsed unstable resonators,” IEEE J. Quantum Electron. QE-24, 1302–1311 (1988).
    [CrossRef]
  15. D. Astadjov, N. Sabotinov, N. Vuchkov, “Effect of hydrogen on CuBr laser power and efficiency,” Opt. Commun. 56, 279–286 (1985).
    [CrossRef]
  16. M. Kushner, B. Warner, “Larger-bore copper-vapor lasers: kinetics and scaling issues,” J. Appl. Phys. 54, 2970–2982 (1983).
    [CrossRef]
  17. A. H. Paxton, T. C. Salvi, “Unstable optical resonator with self-imaging aperture,” Opt. Commun. 26, 305–308 (1978).
    [CrossRef]
  18. P. Clark, J. Howard, E. Freniere, “Asymptotic approximation to the encircled energy function for arbitrary shapes,” Appl. Opt. 23, 353–357 (1984).
    [CrossRef] [PubMed]
  19. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 867–884.

1992 (2)

D. W. Coutts, M. D. Ainsworth, J. A. Piper, “Observation of the temporal evolution of transverse coherence in copper vapor lasers,” Opt. Commun. 87, 245–248 (1992).
[CrossRef]

T. Omatsu, K. Kuroda, “Time-resolved measurement of spatial coherence of a copper vapor laser using a reversal shear interferometer,” Opt. Commun. 87, 278–286 (1992).
[CrossRef]

1991 (1)

T. Omatsu, K. Kuroda, T. Shimura, M. Chihara, M. Itoh, I. Ogura, “Time-resolved measurement of beam divergence of a copper vapor laser using a saturable absorber,” Opt. Commun. 85, 343–349 (1991).
[CrossRef]

1989 (1)

R. Bhatnagar, S. K. Dixit, B. Singh, S. V. Nakhe, “Performance of a copper vapor laser with self-filtering unstable resonator,” Opt. Commun. 74, 93–96 (1989).
[CrossRef]

1988 (2)

J. M. Eggleston, “Theory of output beam divergence in pulsed unstable resonators,” IEEE J. Quantum Electron. QE-24, 1302–1311 (1988).
[CrossRef]

V. V. Zubov, N. A. Lyabin, A. D. Chursin, “A copper laser with high-stable single-beam radiation and controlled divergence,” Sov. J. Quantum Electron. 15, 1947–1954 (1988).

1987 (1)

M. Amit, S. Lavi, G. Erez, E. Miron, “Temporal and spatial properties of an oscillator-amplifier copper vapor laser,” Opt. Commun. 62, 110–114 (1987).
[CrossRef]

1986 (1)

L. Holmes, “Metal vapor lasers: Special capabilities for applications,” Laser Focus 22(12), 76–80 (1986).

1985 (1)

D. Astadjov, N. Sabotinov, N. Vuchkov, “Effect of hydrogen on CuBr laser power and efficiency,” Opt. Commun. 56, 279–286 (1985).
[CrossRef]

1984 (2)

P. G. Gobbi, G. C. Reali, “A novel unstable resonator configuration with a self filtering aperture,” Opt. Commun. 52, 195–198 (1984).
[CrossRef]

P. Clark, J. Howard, E. Freniere, “Asymptotic approximation to the encircled energy function for arbitrary shapes,” Appl. Opt. 23, 353–357 (1984).
[CrossRef] [PubMed]

1983 (1)

M. Kushner, B. Warner, “Larger-bore copper-vapor lasers: kinetics and scaling issues,” J. Appl. Phys. 54, 2970–2982 (1983).
[CrossRef]

1979 (1)

R. S. Hargrove, R. Grove, T. Kan, “Copper vapor laser unstable resonator oscillator and oscillator-amplifier characteristics,” IEEE J. Quantum Electron. QE-15, 1228–1233 (1979).
[CrossRef]

1978 (1)

A. H. Paxton, T. C. Salvi, “Unstable optical resonator with self-imaging aperture,” Opt. Commun. 26, 305–308 (1978).
[CrossRef]

Ainsworth, M. D.

D. W. Coutts, M. D. Ainsworth, J. A. Piper, “Observation of the temporal evolution of transverse coherence in copper vapor lasers,” Opt. Commun. 87, 245–248 (1992).
[CrossRef]

Amit, M.

M. Amit, S. Lavi, G. Erez, E. Miron, “Temporal and spatial properties of an oscillator-amplifier copper vapor laser,” Opt. Commun. 62, 110–114 (1987).
[CrossRef]

Astadjov, D.

D. Astadjov, N. Sabotinov, N. Vuchkov, “Effect of hydrogen on CuBr laser power and efficiency,” Opt. Commun. 56, 279–286 (1985).
[CrossRef]

Belker, D.

M. Lando, D. Belker, A. Lerrer, H. Lotem, A. Dikman, G. Bialolanker, S. Lavi, S. Gabay, “A modified off-axis unstable resonator for copper vapor laser,” in Gas and Metal Vapor Lasers and Applications, J. J. Kim, F. K. Tittel, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1412, 19–26 (1991).

Bergmann, H.

R. Kupfer, H. Bergmann, “Material processing with copper lasers,” in CO2 Lasers and Applications II, H. Opower, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1276, 411–425 (1991).

Bhatnagar, R.

R. Bhatnagar, S. K. Dixit, B. Singh, S. V. Nakhe, “Performance of a copper vapor laser with self-filtering unstable resonator,” Opt. Commun. 74, 93–96 (1989).
[CrossRef]

Bialolanker, G.

M. Lando, D. Belker, A. Lerrer, H. Lotem, A. Dikman, G. Bialolanker, S. Lavi, S. Gabay, “A modified off-axis unstable resonator for copper vapor laser,” in Gas and Metal Vapor Lasers and Applications, J. J. Kim, F. K. Tittel, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1412, 19–26 (1991).

Chihara, M.

T. Omatsu, K. Kuroda, T. Shimura, M. Chihara, M. Itoh, I. Ogura, “Time-resolved measurement of beam divergence of a copper vapor laser using a saturable absorber,” Opt. Commun. 85, 343–349 (1991).
[CrossRef]

Chursin, A. D.

V. V. Zubov, N. A. Lyabin, A. D. Chursin, “A copper laser with high-stable single-beam radiation and controlled divergence,” Sov. J. Quantum Electron. 15, 1947–1954 (1988).

Clark, P.

Coutts, D. W.

D. W. Coutts, M. D. Ainsworth, J. A. Piper, “Observation of the temporal evolution of transverse coherence in copper vapor lasers,” Opt. Commun. 87, 245–248 (1992).
[CrossRef]

Cybo-Ottone, A.

V. Magni, S. D. Silvestri, A. Cybo-Ottone, “Resonators with variable reflectivity mirrors,” in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Hilger, Bristol, UK, 1989).

Dikman, A.

M. Lando, D. Belker, A. Lerrer, H. Lotem, A. Dikman, G. Bialolanker, S. Lavi, S. Gabay, “A modified off-axis unstable resonator for copper vapor laser,” in Gas and Metal Vapor Lasers and Applications, J. J. Kim, F. K. Tittel, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1412, 19–26 (1991).

Dixit, S. K.

R. Bhatnagar, S. K. Dixit, B. Singh, S. V. Nakhe, “Performance of a copper vapor laser with self-filtering unstable resonator,” Opt. Commun. 74, 93–96 (1989).
[CrossRef]

Eggleston, J. M.

J. M. Eggleston, “Theory of output beam divergence in pulsed unstable resonators,” IEEE J. Quantum Electron. QE-24, 1302–1311 (1988).
[CrossRef]

Erez, G.

M. Amit, S. Lavi, G. Erez, E. Miron, “Temporal and spatial properties of an oscillator-amplifier copper vapor laser,” Opt. Commun. 62, 110–114 (1987).
[CrossRef]

Freniere, E.

Gabay, S.

M. Lando, D. Belker, A. Lerrer, H. Lotem, A. Dikman, G. Bialolanker, S. Lavi, S. Gabay, “A modified off-axis unstable resonator for copper vapor laser,” in Gas and Metal Vapor Lasers and Applications, J. J. Kim, F. K. Tittel, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1412, 19–26 (1991).

Gobbi, P. G.

P. G. Gobbi, G. C. Reali, “A novel unstable resonator configuration with a self filtering aperture,” Opt. Commun. 52, 195–198 (1984).
[CrossRef]

Gokay, M. C.

M. C. Gokay, “Industrial applications of metal vapor lasers,” in Gas and Metal Vapor Lasers and Applications, J. J. Kim, F. K. Tittel, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1412, 28–31 (1991).

Grove, R.

R. S. Hargrove, R. Grove, T. Kan, “Copper vapor laser unstable resonator oscillator and oscillator-amplifier characteristics,” IEEE J. Quantum Electron. QE-15, 1228–1233 (1979).
[CrossRef]

Hargrove, R. S.

R. S. Hargrove, R. Grove, T. Kan, “Copper vapor laser unstable resonator oscillator and oscillator-amplifier characteristics,” IEEE J. Quantum Electron. QE-15, 1228–1233 (1979).
[CrossRef]

Holmes, L.

L. Holmes, “Metal vapor lasers: Special capabilities for applications,” Laser Focus 22(12), 76–80 (1986).

Howard, J.

Itoh, M.

T. Omatsu, K. Kuroda, T. Shimura, M. Chihara, M. Itoh, I. Ogura, “Time-resolved measurement of beam divergence of a copper vapor laser using a saturable absorber,” Opt. Commun. 85, 343–349 (1991).
[CrossRef]

Kan, T.

R. S. Hargrove, R. Grove, T. Kan, “Copper vapor laser unstable resonator oscillator and oscillator-amplifier characteristics,” IEEE J. Quantum Electron. QE-15, 1228–1233 (1979).
[CrossRef]

Kupfer, R.

R. Kupfer, H. Bergmann, “Material processing with copper lasers,” in CO2 Lasers and Applications II, H. Opower, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1276, 411–425 (1991).

Kuroda, K.

T. Omatsu, K. Kuroda, “Time-resolved measurement of spatial coherence of a copper vapor laser using a reversal shear interferometer,” Opt. Commun. 87, 278–286 (1992).
[CrossRef]

T. Omatsu, K. Kuroda, T. Shimura, M. Chihara, M. Itoh, I. Ogura, “Time-resolved measurement of beam divergence of a copper vapor laser using a saturable absorber,” Opt. Commun. 85, 343–349 (1991).
[CrossRef]

Kushner, M.

M. Kushner, B. Warner, “Larger-bore copper-vapor lasers: kinetics and scaling issues,” J. Appl. Phys. 54, 2970–2982 (1983).
[CrossRef]

Lando, M.

M. Lando, D. Belker, A. Lerrer, H. Lotem, A. Dikman, G. Bialolanker, S. Lavi, S. Gabay, “A modified off-axis unstable resonator for copper vapor laser,” in Gas and Metal Vapor Lasers and Applications, J. J. Kim, F. K. Tittel, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1412, 19–26 (1991).

Lavi, S.

M. Amit, S. Lavi, G. Erez, E. Miron, “Temporal and spatial properties of an oscillator-amplifier copper vapor laser,” Opt. Commun. 62, 110–114 (1987).
[CrossRef]

M. Lando, D. Belker, A. Lerrer, H. Lotem, A. Dikman, G. Bialolanker, S. Lavi, S. Gabay, “A modified off-axis unstable resonator for copper vapor laser,” in Gas and Metal Vapor Lasers and Applications, J. J. Kim, F. K. Tittel, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1412, 19–26 (1991).

Lerrer, A.

M. Lando, D. Belker, A. Lerrer, H. Lotem, A. Dikman, G. Bialolanker, S. Lavi, S. Gabay, “A modified off-axis unstable resonator for copper vapor laser,” in Gas and Metal Vapor Lasers and Applications, J. J. Kim, F. K. Tittel, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1412, 19–26 (1991).

Lotem, H.

M. Lando, D. Belker, A. Lerrer, H. Lotem, A. Dikman, G. Bialolanker, S. Lavi, S. Gabay, “A modified off-axis unstable resonator for copper vapor laser,” in Gas and Metal Vapor Lasers and Applications, J. J. Kim, F. K. Tittel, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1412, 19–26 (1991).

Lyabin, N. A.

V. V. Zubov, N. A. Lyabin, A. D. Chursin, “A copper laser with high-stable single-beam radiation and controlled divergence,” Sov. J. Quantum Electron. 15, 1947–1954 (1988).

Magni, V.

V. Magni, S. D. Silvestri, A. Cybo-Ottone, “Resonators with variable reflectivity mirrors,” in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Hilger, Bristol, UK, 1989).

Miron, E.

M. Amit, S. Lavi, G. Erez, E. Miron, “Temporal and spatial properties of an oscillator-amplifier copper vapor laser,” Opt. Commun. 62, 110–114 (1987).
[CrossRef]

Nakhe, S. V.

R. Bhatnagar, S. K. Dixit, B. Singh, S. V. Nakhe, “Performance of a copper vapor laser with self-filtering unstable resonator,” Opt. Commun. 74, 93–96 (1989).
[CrossRef]

Ogura, I.

T. Omatsu, K. Kuroda, T. Shimura, M. Chihara, M. Itoh, I. Ogura, “Time-resolved measurement of beam divergence of a copper vapor laser using a saturable absorber,” Opt. Commun. 85, 343–349 (1991).
[CrossRef]

Omatsu, T.

T. Omatsu, K. Kuroda, “Time-resolved measurement of spatial coherence of a copper vapor laser using a reversal shear interferometer,” Opt. Commun. 87, 278–286 (1992).
[CrossRef]

T. Omatsu, K. Kuroda, T. Shimura, M. Chihara, M. Itoh, I. Ogura, “Time-resolved measurement of beam divergence of a copper vapor laser using a saturable absorber,” Opt. Commun. 85, 343–349 (1991).
[CrossRef]

Paxton, A. H.

A. H. Paxton, T. C. Salvi, “Unstable optical resonator with self-imaging aperture,” Opt. Commun. 26, 305–308 (1978).
[CrossRef]

Piper, J. A.

D. W. Coutts, M. D. Ainsworth, J. A. Piper, “Observation of the temporal evolution of transverse coherence in copper vapor lasers,” Opt. Commun. 87, 245–248 (1992).
[CrossRef]

Reali, G. C.

P. G. Gobbi, G. C. Reali, “A novel unstable resonator configuration with a self filtering aperture,” Opt. Commun. 52, 195–198 (1984).
[CrossRef]

Sabotinov, N.

D. Astadjov, N. Sabotinov, N. Vuchkov, “Effect of hydrogen on CuBr laser power and efficiency,” Opt. Commun. 56, 279–286 (1985).
[CrossRef]

Salvi, T. C.

A. H. Paxton, T. C. Salvi, “Unstable optical resonator with self-imaging aperture,” Opt. Commun. 26, 305–308 (1978).
[CrossRef]

Shimura, T.

T. Omatsu, K. Kuroda, T. Shimura, M. Chihara, M. Itoh, I. Ogura, “Time-resolved measurement of beam divergence of a copper vapor laser using a saturable absorber,” Opt. Commun. 85, 343–349 (1991).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 867–884.

Silvestri, S. D.

V. Magni, S. D. Silvestri, A. Cybo-Ottone, “Resonators with variable reflectivity mirrors,” in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Hilger, Bristol, UK, 1989).

Singh, B.

R. Bhatnagar, S. K. Dixit, B. Singh, S. V. Nakhe, “Performance of a copper vapor laser with self-filtering unstable resonator,” Opt. Commun. 74, 93–96 (1989).
[CrossRef]

Vuchkov, N.

D. Astadjov, N. Sabotinov, N. Vuchkov, “Effect of hydrogen on CuBr laser power and efficiency,” Opt. Commun. 56, 279–286 (1985).
[CrossRef]

Warner, B.

M. Kushner, B. Warner, “Larger-bore copper-vapor lasers: kinetics and scaling issues,” J. Appl. Phys. 54, 2970–2982 (1983).
[CrossRef]

Zubov, V. V.

V. V. Zubov, N. A. Lyabin, A. D. Chursin, “A copper laser with high-stable single-beam radiation and controlled divergence,” Sov. J. Quantum Electron. 15, 1947–1954 (1988).

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

J. M. Eggleston, “Theory of output beam divergence in pulsed unstable resonators,” IEEE J. Quantum Electron. QE-24, 1302–1311 (1988).
[CrossRef]

R. S. Hargrove, R. Grove, T. Kan, “Copper vapor laser unstable resonator oscillator and oscillator-amplifier characteristics,” IEEE J. Quantum Electron. QE-15, 1228–1233 (1979).
[CrossRef]

J. Appl. Phys. (1)

M. Kushner, B. Warner, “Larger-bore copper-vapor lasers: kinetics and scaling issues,” J. Appl. Phys. 54, 2970–2982 (1983).
[CrossRef]

Laser Focus (1)

L. Holmes, “Metal vapor lasers: Special capabilities for applications,” Laser Focus 22(12), 76–80 (1986).

Opt. Commun. (8)

M. Amit, S. Lavi, G. Erez, E. Miron, “Temporal and spatial properties of an oscillator-amplifier copper vapor laser,” Opt. Commun. 62, 110–114 (1987).
[CrossRef]

P. G. Gobbi, G. C. Reali, “A novel unstable resonator configuration with a self filtering aperture,” Opt. Commun. 52, 195–198 (1984).
[CrossRef]

R. Bhatnagar, S. K. Dixit, B. Singh, S. V. Nakhe, “Performance of a copper vapor laser with self-filtering unstable resonator,” Opt. Commun. 74, 93–96 (1989).
[CrossRef]

A. H. Paxton, T. C. Salvi, “Unstable optical resonator with self-imaging aperture,” Opt. Commun. 26, 305–308 (1978).
[CrossRef]

D. Astadjov, N. Sabotinov, N. Vuchkov, “Effect of hydrogen on CuBr laser power and efficiency,” Opt. Commun. 56, 279–286 (1985).
[CrossRef]

D. W. Coutts, M. D. Ainsworth, J. A. Piper, “Observation of the temporal evolution of transverse coherence in copper vapor lasers,” Opt. Commun. 87, 245–248 (1992).
[CrossRef]

T. Omatsu, K. Kuroda, “Time-resolved measurement of spatial coherence of a copper vapor laser using a reversal shear interferometer,” Opt. Commun. 87, 278–286 (1992).
[CrossRef]

T. Omatsu, K. Kuroda, T. Shimura, M. Chihara, M. Itoh, I. Ogura, “Time-resolved measurement of beam divergence of a copper vapor laser using a saturable absorber,” Opt. Commun. 85, 343–349 (1991).
[CrossRef]

Sov. J. Quantum Electron. (1)

V. V. Zubov, N. A. Lyabin, A. D. Chursin, “A copper laser with high-stable single-beam radiation and controlled divergence,” Sov. J. Quantum Electron. 15, 1947–1954 (1988).

Other (5)

M. Lando, D. Belker, A. Lerrer, H. Lotem, A. Dikman, G. Bialolanker, S. Lavi, S. Gabay, “A modified off-axis unstable resonator for copper vapor laser,” in Gas and Metal Vapor Lasers and Applications, J. J. Kim, F. K. Tittel, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1412, 19–26 (1991).

R. Kupfer, H. Bergmann, “Material processing with copper lasers,” in CO2 Lasers and Applications II, H. Opower, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1276, 411–425 (1991).

M. C. Gokay, “Industrial applications of metal vapor lasers,” in Gas and Metal Vapor Lasers and Applications, J. J. Kim, F. K. Tittel, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1412, 28–31 (1991).

V. Magni, S. D. Silvestri, A. Cybo-Ottone, “Resonators with variable reflectivity mirrors,” in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Hilger, Bristol, UK, 1989).

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 867–884.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic diagram of the optics setup for far-field powerin-the-bucket measurement.

Fig. 2
Fig. 2

Output from CVL with an unstable resonator: (a) typical output beam showing a feedback hole in the center and a molten-copper shadow on the bottom, (b) the intensity profile across the output beam.

Fig. 3
Fig. 3

Schematic diagram of the positive-branch unstable resonator used in this investigation.

Fig. 4
Fig. 4

Pulse temporal profile of CVL output with an unstable resonator (M = 50) for both the total output, which included ASE, and the lower divergent CVL light (signal), in which ASE was spatially filtered with a soft pinhole: (a) green output (511 nm), and (b) yellow output (578 nm).

Fig. 5
Fig. 5

Far-field pulse temporal profiles of the output from a CVL with an unstable resonator (M = 50) obtained by use of pinholes of different sizes (defined by ×DL) at the focal spot, (a) 511-nm output, (b) 578-nm output.

Fig. 6
Fig. 6

Power in the bucket, far-field energy spread of output from a CVL with an unstable resonator (M = 50) for both 511 and 578 nm.

Fig. 7
Fig. 7

Far-field energy spread of the output (511 nm) of the second, third, and fourth round trips of the cavity of a CVL unstable resonator (M = 50); the first round trip produces all ASE.

Fig. 8
Fig. 8

Temporal far-field-spot evolution in the output (511 nm) of a 4-cm CVL with an unstable resonator (M = 50). The pictures were taken with a 5-ns-gated camera: (a) output during the second round trip of the cavity, (b) output during the beginning of the third round trip, (c) output during most of the third and the fourth round trips, (d) output during the later part of the fourth round trip. The beam intensity was varied with ND filters to avoid saturation of the camera during the pulse; the size of the larger ring-shape pattern is approximately 10 ×DL. The first round trip was all highly divergent ASE (~500 ×DL).

Fig. 9
Fig. 9

Time-resolved beam-divergence output variation of a CVL with an unstable resonator (M = 50) for (a) 511-nm output and (b) 578-nm output.

Fig. 10
Fig. 10

Output power for a CVL with an unstable resonator, with and without ASE, at cavity magnifications (M) of 15, 50, 100, and 130 for (a) 511-nm output and (b) 578-nm output.

Fig. 11
Fig. 11

Power-in-the-bucket far-field output energy (511 nm) spread of a CVL with an unstable resonator at magnifications (M) of 15, 50, 100, and 130: (a) absolute measurement, (b) measurement normalized with the output power of M = 15.

Fig. 12
Fig. 12

CVL far-field energy (511 nm) spread for each round trip of the cavity with unstable resonators with magnifications (M) of 15, 50, 100, and 130: (a) output of the second round trip, (b) output of the third round trip, (c) output of the fourth round trip.

Fig. 13
Fig. 13

Comparison of the far-field energy (511 nm) spread from the use of three different unstable cavity configurations: a 2-cm CVL with M = 25 and M = 100 and a 4-cm CVL with M = 100: (a) output of the second round trip of the cavity, (b) output of the third round trip, (c) output of the fourth round trip.

Fig. 14
Fig. 14

Temporal BQ variation: (a) far-field pulse temporal profile of the output of a 2-cm CVL with an unstable resonator (M = 100) with pinholes of different sizes (×DL) at the focal spot and (b) time-resolved beam-divergence variation deduced from (a).

Fig. 15
Fig. 15

Far-field spot of the output (511 nm) a 2-cm CVL with an unstable resonator (M = 100); the pictures were taken with a 5-ns-gated camera: (a) far-field pattern during the second round trip of the cavity, (b) far-field pattern during the third and fourth round trips. The size of the spot in both (a) and (b) is approximately 1–2 ×DL. The first round trip of the cavity (not shown) produces all ASE (~120 ×DL).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

× DL D pinhole D Airy disk
θ = C 1 D L M n 1
× DL = C 1 D 2 C 2 λ L M n 1
M ( C 1 D 2 2 . 44 λ L ) 1 / ( n 1 )

Metrics