Abstract

We present a fiber-sensing technique that detects the mean-absolute speckle-intensity variation between the updated and the reference speckle pattern for determining the environmental perturbation factor (e.g., displacement, temperature, pressure, acoustic wave). We show that the proposed technique is highly sensitive and simple. One of the major advantages of the proposed technique is that it can perform a fast-response measurement with off-the-shelf electronic hardware. Experimental data for submicrometer displacement as well as temperature measurement are provided. To extend the dynamic range of the proposed technique, one can use an updated reference speckle pattern.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Butter, G. B. Hocker, “Fiber optics strain gauge,” Appl. Opt. 17, 2867–2869 (1978).
    [CrossRef] [PubMed]
  2. B. Culshaw, D. E. N. Davies, S. A. Kingsley, “Acoustic sensitivity of optical-fiber waveguides,” Electron. Lett. 13, 760–765 (1977).
    [CrossRef]
  3. R. O. Claus, K. D. Bennett, A. M. Vengsarkar, K. A. Murphy, “Embedded optical fiber sensors for materials evaluation,” J. Nondestruct. Eval. 8, 135–145 (1989).
    [CrossRef]
  4. J. N. Blake, S. Y. Huang, B. Y. Kim, H. J. Shaw, “Strain effects on highly elliptical core two-mode fibers,” Opt. Lett. 12, 732–734 (1987).
    [CrossRef] [PubMed]
  5. S. Wu, S. Yin, F. T. S. Yu, “Sensing with fiber specklegrams,” Appl. Opt. 30, 4468–4470 (1991).
    [CrossRef] [PubMed]
  6. L. G. Cohen, “Pulse transmission measurements for determining near optimal profile gratings in multimode borosilicate optical fibers,” Appl. Opt. 15, 1808–1814 (1976).
    [CrossRef] [PubMed]
  7. L. Cheng, “Core-ring-ratio method for surface roughness measurement,” J. Wave-Mater. Interact. 3, 289–300 (1988).
  8. E. Udd, Fiber Optic Sensors (Wiley, New York, 1991), pp. 310–313.
  9. F. T. S. Yu, K. Pan, C.-M. Uang, P. B. Ruffin, “Fiber specklegram sensing using an adaptive joint transform correlator,” Opt. Eng. (to be published).

1991

1989

R. O. Claus, K. D. Bennett, A. M. Vengsarkar, K. A. Murphy, “Embedded optical fiber sensors for materials evaluation,” J. Nondestruct. Eval. 8, 135–145 (1989).
[CrossRef]

1988

L. Cheng, “Core-ring-ratio method for surface roughness measurement,” J. Wave-Mater. Interact. 3, 289–300 (1988).

1987

1978

1977

B. Culshaw, D. E. N. Davies, S. A. Kingsley, “Acoustic sensitivity of optical-fiber waveguides,” Electron. Lett. 13, 760–765 (1977).
[CrossRef]

1976

Bennett, K. D.

R. O. Claus, K. D. Bennett, A. M. Vengsarkar, K. A. Murphy, “Embedded optical fiber sensors for materials evaluation,” J. Nondestruct. Eval. 8, 135–145 (1989).
[CrossRef]

Blake, J. N.

Butter, C. D.

Cheng, L.

L. Cheng, “Core-ring-ratio method for surface roughness measurement,” J. Wave-Mater. Interact. 3, 289–300 (1988).

Claus, R. O.

R. O. Claus, K. D. Bennett, A. M. Vengsarkar, K. A. Murphy, “Embedded optical fiber sensors for materials evaluation,” J. Nondestruct. Eval. 8, 135–145 (1989).
[CrossRef]

Cohen, L. G.

Culshaw, B.

B. Culshaw, D. E. N. Davies, S. A. Kingsley, “Acoustic sensitivity of optical-fiber waveguides,” Electron. Lett. 13, 760–765 (1977).
[CrossRef]

Davies, D. E. N.

B. Culshaw, D. E. N. Davies, S. A. Kingsley, “Acoustic sensitivity of optical-fiber waveguides,” Electron. Lett. 13, 760–765 (1977).
[CrossRef]

Hocker, G. B.

Huang, S. Y.

Kim, B. Y.

Kingsley, S. A.

B. Culshaw, D. E. N. Davies, S. A. Kingsley, “Acoustic sensitivity of optical-fiber waveguides,” Electron. Lett. 13, 760–765 (1977).
[CrossRef]

Murphy, K. A.

R. O. Claus, K. D. Bennett, A. M. Vengsarkar, K. A. Murphy, “Embedded optical fiber sensors for materials evaluation,” J. Nondestruct. Eval. 8, 135–145 (1989).
[CrossRef]

Pan, K.

F. T. S. Yu, K. Pan, C.-M. Uang, P. B. Ruffin, “Fiber specklegram sensing using an adaptive joint transform correlator,” Opt. Eng. (to be published).

Ruffin, P. B.

F. T. S. Yu, K. Pan, C.-M. Uang, P. B. Ruffin, “Fiber specklegram sensing using an adaptive joint transform correlator,” Opt. Eng. (to be published).

Shaw, H. J.

Uang, C.-M.

F. T. S. Yu, K. Pan, C.-M. Uang, P. B. Ruffin, “Fiber specklegram sensing using an adaptive joint transform correlator,” Opt. Eng. (to be published).

Udd, E.

E. Udd, Fiber Optic Sensors (Wiley, New York, 1991), pp. 310–313.

Vengsarkar, A. M.

R. O. Claus, K. D. Bennett, A. M. Vengsarkar, K. A. Murphy, “Embedded optical fiber sensors for materials evaluation,” J. Nondestruct. Eval. 8, 135–145 (1989).
[CrossRef]

Wu, S.

Yin, S.

Yu, F. T. S.

S. Wu, S. Yin, F. T. S. Yu, “Sensing with fiber specklegrams,” Appl. Opt. 30, 4468–4470 (1991).
[CrossRef] [PubMed]

F. T. S. Yu, K. Pan, C.-M. Uang, P. B. Ruffin, “Fiber specklegram sensing using an adaptive joint transform correlator,” Opt. Eng. (to be published).

Appl. Opt.

Electron. Lett.

B. Culshaw, D. E. N. Davies, S. A. Kingsley, “Acoustic sensitivity of optical-fiber waveguides,” Electron. Lett. 13, 760–765 (1977).
[CrossRef]

J. Nondestruct. Eval.

R. O. Claus, K. D. Bennett, A. M. Vengsarkar, K. A. Murphy, “Embedded optical fiber sensors for materials evaluation,” J. Nondestruct. Eval. 8, 135–145 (1989).
[CrossRef]

J. Wave-Mater. Interact.

L. Cheng, “Core-ring-ratio method for surface roughness measurement,” J. Wave-Mater. Interact. 3, 289–300 (1988).

Opt. Lett.

Other

E. Udd, Fiber Optic Sensors (Wiley, New York, 1991), pp. 310–313.

F. T. S. Yu, K. Pan, C.-M. Uang, P. B. Ruffin, “Fiber specklegram sensing using an adaptive joint transform correlator,” Opt. Eng. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of the MSV measurement.

Fig. 2
Fig. 2

Normalized MSV as a function of displacement. The reference speckle pattern is taken at an initial state.

Fig. 3
Fig. 3

Normalized MSV as a function of temperature variation ΔT. The reference speckle pattern is taken at 21 °C.

Fig. 4
Fig. 4

Extension of the dynamic measurement.

Fig. 5
Fig. 5

Effects caused by the N.A.

Fig. 6
Fig. 6

Comparison of the MSV technique with the JTC method.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

u 0 m ( x , y ) = a 0 m ( x , y ) exp [ j ϕ 0 m ( x , y ) ] ,
U 0 ( x , y ) = m = 1 M u 0 m ( x , y ) = m = 1 M a 0 m ( x , y ) exp [ j ϕ 0 m ( x , y ) ] ,
u m ( x , y ) = [ a 0 m ( x , y ) + Δ a m ] exp { j [ ϕ 0 m ( x , y ) + Δ ϕ m ] } .
U ( x , y ) = m = 1 M u m ( x , y ) = m = 1 M [ a 0 m ( x , y ) + Δ a m ] × exp { j [ ϕ 0 m ( x , y ) + Δ ϕ m ] } ,
Δ I ( x , y ) = I 0 ( x , y ) I ( x , y ) = | U 0 ( x , y ) | 2 | U ( x , y ) | 2 ,
Δ I = m = 1 M 1 n = m + 1 M a 0 m a 0 n exp [ j ( ϕ 0 m ϕ n ) ] m = 1 M 1 n = m + 1 M ( a 0 m + Δ a m ) ( a 0 n + Δ a n ) × exp [ j ( ϕ 0 m ϕ 0 n + Δ ϕ m Δ ϕ n ) ] .
Δ I = m = 1 M 1 n = m + 1 M 4 a 0 m a 0 n sin [ ϕ 0 m ϕ 0 n + ( Δ ϕ m Δ ϕ n ) / 2 ] × sin [ ( Δ ϕ n Δ ϕ m ) / 2 ] ,
MSV = | Δ I | d x d y = | m = 1 M 1 n = m + 1 M 4 a 0 m a 0 n × sin [ ϕ 0 m ϕ 0 n + ( Δ ϕ m Δ ϕ n ) / 2 ] × sin [ ( Δ ϕ m Δ ϕ n ) / 2 ] | d x d y .
ψ m n = ϕ m ϕ n , Δ ψ m n = Δ ϕ n Δ ϕ m ,
k L ψ m n ( x , y ) ψ 0 M ( x , y ) , k ( Δ L ) Δ ψ n m Δ ψ 0 M ,
Δ ψ n m = Δ ϕ n Δ ϕ m = ( n m ) Δ ψ 0 M / M ,
Δ ψ 0 M = k ξη Δ L ( 1 / cos θ M 1 ) ,
MSV Δ L L | m = 1 M 1 n = m + 1 M 2 a 0 m a 0 n ( 2 π λ ) ξη L × ( 1 cos θ M 1 ) ( n m ) / M sin ( ψ n m ) | d x d y ,
θ M arcsin ( sin θ c η ) ,
0 < Δ L / L < 7 . 1 × 10 5
Δ ψ 0 M = k L ( 1 cos θ M 1 ) ( η L d L d T d η d T ) Δ T .
0 < Δ T < 7 . 74 ° C .

Metrics