Abstract

A spectrograph concept designed for both high wavelength and high spatial resolution (in one dimension) is briefly described. This design is referred to as a single-element imaging spectrograph (SEIS). It is a one-bounce diffractive system that combines the spectral properties of a Rowland mount spectrograph with the imaging (spatial resolution) properties of a Wadsworth mount spectrograph through the use of a toroidal diffraction grating. No primary optics are necessary, making the system especially attractive for use in the extreme and far ultraviolet, where low reflectivity of common optical coatings can severely limit instrument sensitivity.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kumar, F. Paresce, S. Bowyer, M. Lampton, “Extreme ultraviolet spectrometer for space research,” Appl. Opt. 13, 575–580 (1974).
    [CrossRef] [PubMed]
  2. S. Bowyer, R. Kimble, F. Paresce, M. Lampton, G. Penegor, “Continuous-readout extreme-ultraviolet airglow spectrometer,” Appl. Opt. 20, 477–486 (1981).
    [CrossRef] [PubMed]
  3. A. B. Christensen, D. C. Kayser, J. B. Pranke, P. R. Straus, D. J. Gutierrez, S. Chakrabarti, R. P. McCoy, R. R. Meier, K. D. Wolfram, J. M. Picone, “Instrumentation on the RAIDS experiment II: extreme ultraviolet spectrometer, photometer, and near-IR spectrometer,” in Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing, S. Chakrabarti, A. B. Christensen, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1745, 89–98 (1992).
  4. C. Martin, S. Bowyer, “Discovery of high ionization far ultraviolet line emission from the interstellar medium,” Astrophys. J. 350, 242–261 (1990).
    [CrossRef]
  5. H. G. Beutler, “The theory of the concave grating,” J. Opt. Soc. Am. 35, 311–350 (1945).
    [CrossRef]
  6. H. Haber, “The torus grating,” J. Opt. Soc. Am. 40, 153–165 (1950).
    [CrossRef]
  7. T. N. Woods, G. J. Rottman, “Solar EUV irradiance derived from a sounding rocket experiment on November 10, 1988,” J. Geophys. Res. 95, 6227–6236 (1990).
    [CrossRef]
  8. W. E. McClintock, G. M. Lawrence, R. A. Kohnert, L. W. Esposito, “Optical design of the ultraviolet imaging spectrograph for the Cassini mission to Saturn,” in Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing, S. Chakrabarti, A. B. Christensen, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1745, 26–38 (1992).

1990 (2)

C. Martin, S. Bowyer, “Discovery of high ionization far ultraviolet line emission from the interstellar medium,” Astrophys. J. 350, 242–261 (1990).
[CrossRef]

T. N. Woods, G. J. Rottman, “Solar EUV irradiance derived from a sounding rocket experiment on November 10, 1988,” J. Geophys. Res. 95, 6227–6236 (1990).
[CrossRef]

1981 (1)

1974 (1)

1950 (1)

1945 (1)

Beutler, H. G.

Bowyer, S.

Chakrabarti, S.

A. B. Christensen, D. C. Kayser, J. B. Pranke, P. R. Straus, D. J. Gutierrez, S. Chakrabarti, R. P. McCoy, R. R. Meier, K. D. Wolfram, J. M. Picone, “Instrumentation on the RAIDS experiment II: extreme ultraviolet spectrometer, photometer, and near-IR spectrometer,” in Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing, S. Chakrabarti, A. B. Christensen, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1745, 89–98 (1992).

Christensen, A. B.

A. B. Christensen, D. C. Kayser, J. B. Pranke, P. R. Straus, D. J. Gutierrez, S. Chakrabarti, R. P. McCoy, R. R. Meier, K. D. Wolfram, J. M. Picone, “Instrumentation on the RAIDS experiment II: extreme ultraviolet spectrometer, photometer, and near-IR spectrometer,” in Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing, S. Chakrabarti, A. B. Christensen, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1745, 89–98 (1992).

Esposito, L. W.

W. E. McClintock, G. M. Lawrence, R. A. Kohnert, L. W. Esposito, “Optical design of the ultraviolet imaging spectrograph for the Cassini mission to Saturn,” in Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing, S. Chakrabarti, A. B. Christensen, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1745, 26–38 (1992).

Gutierrez, D. J.

A. B. Christensen, D. C. Kayser, J. B. Pranke, P. R. Straus, D. J. Gutierrez, S. Chakrabarti, R. P. McCoy, R. R. Meier, K. D. Wolfram, J. M. Picone, “Instrumentation on the RAIDS experiment II: extreme ultraviolet spectrometer, photometer, and near-IR spectrometer,” in Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing, S. Chakrabarti, A. B. Christensen, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1745, 89–98 (1992).

Haber, H.

Kayser, D. C.

A. B. Christensen, D. C. Kayser, J. B. Pranke, P. R. Straus, D. J. Gutierrez, S. Chakrabarti, R. P. McCoy, R. R. Meier, K. D. Wolfram, J. M. Picone, “Instrumentation on the RAIDS experiment II: extreme ultraviolet spectrometer, photometer, and near-IR spectrometer,” in Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing, S. Chakrabarti, A. B. Christensen, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1745, 89–98 (1992).

Kimble, R.

Kohnert, R. A.

W. E. McClintock, G. M. Lawrence, R. A. Kohnert, L. W. Esposito, “Optical design of the ultraviolet imaging spectrograph for the Cassini mission to Saturn,” in Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing, S. Chakrabarti, A. B. Christensen, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1745, 26–38 (1992).

Kumar, S.

Lampton, M.

Lawrence, G. M.

W. E. McClintock, G. M. Lawrence, R. A. Kohnert, L. W. Esposito, “Optical design of the ultraviolet imaging spectrograph for the Cassini mission to Saturn,” in Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing, S. Chakrabarti, A. B. Christensen, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1745, 26–38 (1992).

Martin, C.

C. Martin, S. Bowyer, “Discovery of high ionization far ultraviolet line emission from the interstellar medium,” Astrophys. J. 350, 242–261 (1990).
[CrossRef]

McClintock, W. E.

W. E. McClintock, G. M. Lawrence, R. A. Kohnert, L. W. Esposito, “Optical design of the ultraviolet imaging spectrograph for the Cassini mission to Saturn,” in Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing, S. Chakrabarti, A. B. Christensen, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1745, 26–38 (1992).

McCoy, R. P.

A. B. Christensen, D. C. Kayser, J. B. Pranke, P. R. Straus, D. J. Gutierrez, S. Chakrabarti, R. P. McCoy, R. R. Meier, K. D. Wolfram, J. M. Picone, “Instrumentation on the RAIDS experiment II: extreme ultraviolet spectrometer, photometer, and near-IR spectrometer,” in Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing, S. Chakrabarti, A. B. Christensen, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1745, 89–98 (1992).

Meier, R. R.

A. B. Christensen, D. C. Kayser, J. B. Pranke, P. R. Straus, D. J. Gutierrez, S. Chakrabarti, R. P. McCoy, R. R. Meier, K. D. Wolfram, J. M. Picone, “Instrumentation on the RAIDS experiment II: extreme ultraviolet spectrometer, photometer, and near-IR spectrometer,” in Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing, S. Chakrabarti, A. B. Christensen, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1745, 89–98 (1992).

Paresce, F.

Penegor, G.

Picone, J. M.

A. B. Christensen, D. C. Kayser, J. B. Pranke, P. R. Straus, D. J. Gutierrez, S. Chakrabarti, R. P. McCoy, R. R. Meier, K. D. Wolfram, J. M. Picone, “Instrumentation on the RAIDS experiment II: extreme ultraviolet spectrometer, photometer, and near-IR spectrometer,” in Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing, S. Chakrabarti, A. B. Christensen, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1745, 89–98 (1992).

Pranke, J. B.

A. B. Christensen, D. C. Kayser, J. B. Pranke, P. R. Straus, D. J. Gutierrez, S. Chakrabarti, R. P. McCoy, R. R. Meier, K. D. Wolfram, J. M. Picone, “Instrumentation on the RAIDS experiment II: extreme ultraviolet spectrometer, photometer, and near-IR spectrometer,” in Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing, S. Chakrabarti, A. B. Christensen, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1745, 89–98 (1992).

Rottman, G. J.

T. N. Woods, G. J. Rottman, “Solar EUV irradiance derived from a sounding rocket experiment on November 10, 1988,” J. Geophys. Res. 95, 6227–6236 (1990).
[CrossRef]

Straus, P. R.

A. B. Christensen, D. C. Kayser, J. B. Pranke, P. R. Straus, D. J. Gutierrez, S. Chakrabarti, R. P. McCoy, R. R. Meier, K. D. Wolfram, J. M. Picone, “Instrumentation on the RAIDS experiment II: extreme ultraviolet spectrometer, photometer, and near-IR spectrometer,” in Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing, S. Chakrabarti, A. B. Christensen, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1745, 89–98 (1992).

Wolfram, K. D.

A. B. Christensen, D. C. Kayser, J. B. Pranke, P. R. Straus, D. J. Gutierrez, S. Chakrabarti, R. P. McCoy, R. R. Meier, K. D. Wolfram, J. M. Picone, “Instrumentation on the RAIDS experiment II: extreme ultraviolet spectrometer, photometer, and near-IR spectrometer,” in Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing, S. Chakrabarti, A. B. Christensen, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1745, 89–98 (1992).

Woods, T. N.

T. N. Woods, G. J. Rottman, “Solar EUV irradiance derived from a sounding rocket experiment on November 10, 1988,” J. Geophys. Res. 95, 6227–6236 (1990).
[CrossRef]

Appl. Opt. (2)

Astrophys. J. (1)

C. Martin, S. Bowyer, “Discovery of high ionization far ultraviolet line emission from the interstellar medium,” Astrophys. J. 350, 242–261 (1990).
[CrossRef]

J. Geophys. Res. (1)

T. N. Woods, G. J. Rottman, “Solar EUV irradiance derived from a sounding rocket experiment on November 10, 1988,” J. Geophys. Res. 95, 6227–6236 (1990).
[CrossRef]

J. Opt. Soc. Am. (2)

Other (2)

A. B. Christensen, D. C. Kayser, J. B. Pranke, P. R. Straus, D. J. Gutierrez, S. Chakrabarti, R. P. McCoy, R. R. Meier, K. D. Wolfram, J. M. Picone, “Instrumentation on the RAIDS experiment II: extreme ultraviolet spectrometer, photometer, and near-IR spectrometer,” in Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing, S. Chakrabarti, A. B. Christensen, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1745, 89–98 (1992).

W. E. McClintock, G. M. Lawrence, R. A. Kohnert, L. W. Esposito, “Optical design of the ultraviolet imaging spectrograph for the Cassini mission to Saturn,” in Instrumentation for Planetary and Terrestrial Atmospheric Remote Sensing, S. Chakrabarti, A. B. Christensen, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1745, 26–38 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical layout of the SEIS mount spectrograph.

Fig. 2
Fig. 2

Illustration of the coordinates for the toroidal grating. This diagram is fashioned after Fig. 2 of Haber.6

Fig. 3
Fig. 3

Ray trace for the SEIS solar spectrograph system described in the text. Three arbitrary doublets separated by 9.4 Å were traced at 300, 800, and 1300 Å for 50 discrete angular positions between −1.25° and 1.25° along the slit.

Fig. 4
Fig. 4

Blowup of the ray trace showing the wavelength and imaging resolution in more detail.

Fig. 5
Fig. 5

Simulated planetary SEIS detector image. The instrument uses only half of the detector; the other half is reserved for another instrument.

Fig. 6
Fig. 6

Demonstration of spatial and spectral resolution at the edge of the bandpass and the edge of the FOV. The dotted line to the left is the edge of the hypothetical detector.

Fig. 7
Fig. 7

Demonstration of spatial and spectral resolution at the best focus wavelength in the center of the FOV.

Fig. 8
Fig. 8

Demonstration of spatial and spectral resolution at the center of the bandpass and the edge of the FOV.

Tables (1)

Tables Icon

Table 1 Instrument Parameters for the Solar and Planetary SEIS

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

sin β = sin α + m λ / d ,
r a = R cos ( α ) , r b = R cos ( β ) .
ρ / R = cos β ( cos α + cos β ) ,
A s = s L / r bh = ( L / ρ ) [ ρ R cos β ( cos α + cos β ) ] .

Metrics