Abstract

Using correlated photons from spontaneous parametric downconversion, we have measured both the absolute quantum efficiencies and the time responses of four single-photon detectors. Efficiencies as high as (76.4 ± 2.3)% (at 702 nm) were seen, which to our knowledge are the highest reported single-photon detection efficiencies. An auxiliary retroreflection mirror was found to increase the net detection efficiency by as much as a factor of 1.19. The narrowest time profile for coincidences between two detectors displays a peak with 300 ps FWHM. We also investigated the presence of afterpulses and the effects of saturation and varying device parameters.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Petroff, M. G. Stapelbroek, W. A. Kleinhans, “Detection of individual 0.4–28 μm wavelength photons via impurity-impact ionization in a solid-state photomultiplier,” Appl. Phys. Lett. 51, 406–408 (1987).
    [CrossRef]
  2. A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon counting modules using RCA silicon avalanche photodiodes,” Electron. Eng. 61, 37–47 (1989).
  3. P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, M. D. Petroff, “High efficiency single-photon detectors,” Phys. Rev. A 48, R867 (1993).
    [CrossRef] [PubMed]
  4. J. G. Rarity, P. R. Tapster, J. A. Levenson, J. C. Garreau, I. Abram, J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, E. Giacobino, “Quantum correlated twin beams,” Appl. Phys. B 55, 250–257 (1992).
    [CrossRef]
  5. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988), Chap. 7, p. 430.
  6. C. K. Hong, L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31, 2409–2418 (1985).
    [CrossRef] [PubMed]
  7. D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112–1116 (1980).
    [CrossRef]
  8. J. G. Rarity, K. D. Ridley, P. R. Tapster, “Absolute measurement of detector quantum efficiency using parametric downconversion,” Appl. Opt. 26, 4616–4619 (1987).
    [CrossRef] [PubMed]
  9. Because of saturation effects (arising from intrinsic dead time in the devices), the efficiency actually depends on the incident light intensity (see Section 8 in the text). However, for simplicity we use η to denote the efficiency in the low-light limit.
  10. H. Z. Cummins, E. R. Pike, eds., Photon Correlation and Light Beating Spectroscopy (Plenum, New York, 1974).
  11. R. J. McIntyre, “On the avalanche initiation probability of avalanche diodes above the breakdown voltage,” IEEE Trans. Electron. Devices 20, 637–641 (1973).
    [CrossRef]
  12. R. J. McIntyre, Optoelectronics Division, EG&G Canada, Ltd., 22001, Dumberry, Vaudreuil J7V 8P7, Canada (personal communication, 1993).
  13. A secondary measurement revealed that the reflection intensity off the crystal input face (coated for low loss at 351 nm) was (3.37 ± 0.38)%. In a few of the runs the crystal was accidentally inserted backward; in these cases, the reflection losses are those from the 351-nm coating. This correction is included in Table 1, where appropriate.
  14. A. M. Steinberg, P. G. Kwiat, R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
    [CrossRef] [PubMed]
  15. L. Q. Li, L. M. Davis, S. I. Soltesz, C. J. Trottier, “Single-photon avalanche diode for single molecule detection,” in OSA Annual Meeting, Vol. 23 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992).
  16. At one point a fast oscilloscope (triggered on the trigger-detector output) was used to observe the coincidence pulses. No precursors were observed, but two of the ten coincident pulses were delayed by ~20 ns relative to the other eight. The probability of these being accidental is very small. However, these postcursors were not seen on a second scope trace with 14 coincidence events displayed.
  17. A. D. MacGregor, Optoelectronics Division, EG&G Canada, Ltd., 22001 Dumberry, Vaudreuil J7V 8P7, Canada (personal communication, 1992).

1993 (1)

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, M. D. Petroff, “High efficiency single-photon detectors,” Phys. Rev. A 48, R867 (1993).
[CrossRef] [PubMed]

1992 (2)

J. G. Rarity, P. R. Tapster, J. A. Levenson, J. C. Garreau, I. Abram, J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, E. Giacobino, “Quantum correlated twin beams,” Appl. Phys. B 55, 250–257 (1992).
[CrossRef]

A. M. Steinberg, P. G. Kwiat, R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[CrossRef] [PubMed]

1989 (1)

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon counting modules using RCA silicon avalanche photodiodes,” Electron. Eng. 61, 37–47 (1989).

1987 (2)

M. D. Petroff, M. G. Stapelbroek, W. A. Kleinhans, “Detection of individual 0.4–28 μm wavelength photons via impurity-impact ionization in a solid-state photomultiplier,” Appl. Phys. Lett. 51, 406–408 (1987).
[CrossRef]

J. G. Rarity, K. D. Ridley, P. R. Tapster, “Absolute measurement of detector quantum efficiency using parametric downconversion,” Appl. Opt. 26, 4616–4619 (1987).
[CrossRef] [PubMed]

1985 (1)

C. K. Hong, L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31, 2409–2418 (1985).
[CrossRef] [PubMed]

1980 (1)

D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112–1116 (1980).
[CrossRef]

1973 (1)

R. J. McIntyre, “On the avalanche initiation probability of avalanche diodes above the breakdown voltage,” IEEE Trans. Electron. Devices 20, 637–641 (1973).
[CrossRef]

Abram, I.

J. G. Rarity, P. R. Tapster, J. A. Levenson, J. C. Garreau, I. Abram, J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, E. Giacobino, “Quantum correlated twin beams,” Appl. Phys. B 55, 250–257 (1992).
[CrossRef]

Chiao, R. Y.

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, M. D. Petroff, “High efficiency single-photon detectors,” Phys. Rev. A 48, R867 (1993).
[CrossRef] [PubMed]

A. M. Steinberg, P. G. Kwiat, R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[CrossRef] [PubMed]

Davis, L. M.

L. Q. Li, L. M. Davis, S. I. Soltesz, C. J. Trottier, “Single-photon avalanche diode for single molecule detection,” in OSA Annual Meeting, Vol. 23 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992).

Debuisschert, T.

J. G. Rarity, P. R. Tapster, J. A. Levenson, J. C. Garreau, I. Abram, J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, E. Giacobino, “Quantum correlated twin beams,” Appl. Phys. B 55, 250–257 (1992).
[CrossRef]

Eberhard, P. H.

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, M. D. Petroff, “High efficiency single-photon detectors,” Phys. Rev. A 48, R867 (1993).
[CrossRef] [PubMed]

Fabre, C.

J. G. Rarity, P. R. Tapster, J. A. Levenson, J. C. Garreau, I. Abram, J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, E. Giacobino, “Quantum correlated twin beams,” Appl. Phys. B 55, 250–257 (1992).
[CrossRef]

Garreau, J. C.

J. G. Rarity, P. R. Tapster, J. A. Levenson, J. C. Garreau, I. Abram, J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, E. Giacobino, “Quantum correlated twin beams,” Appl. Phys. B 55, 250–257 (1992).
[CrossRef]

Giacobino, E.

J. G. Rarity, P. R. Tapster, J. A. Levenson, J. C. Garreau, I. Abram, J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, E. Giacobino, “Quantum correlated twin beams,” Appl. Phys. B 55, 250–257 (1992).
[CrossRef]

Heidmann, A.

J. G. Rarity, P. R. Tapster, J. A. Levenson, J. C. Garreau, I. Abram, J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, E. Giacobino, “Quantum correlated twin beams,” Appl. Phys. B 55, 250–257 (1992).
[CrossRef]

Hong, C. K.

C. K. Hong, L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31, 2409–2418 (1985).
[CrossRef] [PubMed]

Kleinhans, W. A.

M. D. Petroff, M. G. Stapelbroek, W. A. Kleinhans, “Detection of individual 0.4–28 μm wavelength photons via impurity-impact ionization in a solid-state photomultiplier,” Appl. Phys. Lett. 51, 406–408 (1987).
[CrossRef]

Klyshko, D. N.

D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112–1116 (1980).
[CrossRef]

Kwiat, P. G.

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, M. D. Petroff, “High efficiency single-photon detectors,” Phys. Rev. A 48, R867 (1993).
[CrossRef] [PubMed]

A. M. Steinberg, P. G. Kwiat, R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[CrossRef] [PubMed]

Levenson, J. A.

J. G. Rarity, P. R. Tapster, J. A. Levenson, J. C. Garreau, I. Abram, J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, E. Giacobino, “Quantum correlated twin beams,” Appl. Phys. B 55, 250–257 (1992).
[CrossRef]

Li, L. Q.

L. Q. Li, L. M. Davis, S. I. Soltesz, C. J. Trottier, “Single-photon avalanche diode for single molecule detection,” in OSA Annual Meeting, Vol. 23 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992).

Lightstone, A. W.

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon counting modules using RCA silicon avalanche photodiodes,” Electron. Eng. 61, 37–47 (1989).

MacGregor, A. D.

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon counting modules using RCA silicon avalanche photodiodes,” Electron. Eng. 61, 37–47 (1989).

A. D. MacGregor, Optoelectronics Division, EG&G Canada, Ltd., 22001 Dumberry, Vaudreuil J7V 8P7, Canada (personal communication, 1992).

MacSween, D. E.

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon counting modules using RCA silicon avalanche photodiodes,” Electron. Eng. 61, 37–47 (1989).

Mandel, L.

C. K. Hong, L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31, 2409–2418 (1985).
[CrossRef] [PubMed]

McIntyre, R. J.

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon counting modules using RCA silicon avalanche photodiodes,” Electron. Eng. 61, 37–47 (1989).

R. J. McIntyre, “On the avalanche initiation probability of avalanche diodes above the breakdown voltage,” IEEE Trans. Electron. Devices 20, 637–641 (1973).
[CrossRef]

R. J. McIntyre, Optoelectronics Division, EG&G Canada, Ltd., 22001, Dumberry, Vaudreuil J7V 8P7, Canada (personal communication, 1993).

Mertz, J.

J. G. Rarity, P. R. Tapster, J. A. Levenson, J. C. Garreau, I. Abram, J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, E. Giacobino, “Quantum correlated twin beams,” Appl. Phys. B 55, 250–257 (1992).
[CrossRef]

Petroff, M. D.

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, M. D. Petroff, “High efficiency single-photon detectors,” Phys. Rev. A 48, R867 (1993).
[CrossRef] [PubMed]

M. D. Petroff, M. G. Stapelbroek, W. A. Kleinhans, “Detection of individual 0.4–28 μm wavelength photons via impurity-impact ionization in a solid-state photomultiplier,” Appl. Phys. Lett. 51, 406–408 (1987).
[CrossRef]

Rarity, J. G.

J. G. Rarity, P. R. Tapster, J. A. Levenson, J. C. Garreau, I. Abram, J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, E. Giacobino, “Quantum correlated twin beams,” Appl. Phys. B 55, 250–257 (1992).
[CrossRef]

J. G. Rarity, K. D. Ridley, P. R. Tapster, “Absolute measurement of detector quantum efficiency using parametric downconversion,” Appl. Opt. 26, 4616–4619 (1987).
[CrossRef] [PubMed]

Ridley, K. D.

Soltesz, S. I.

L. Q. Li, L. M. Davis, S. I. Soltesz, C. J. Trottier, “Single-photon avalanche diode for single molecule detection,” in OSA Annual Meeting, Vol. 23 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992).

Stapelbroek, M. G.

M. D. Petroff, M. G. Stapelbroek, W. A. Kleinhans, “Detection of individual 0.4–28 μm wavelength photons via impurity-impact ionization in a solid-state photomultiplier,” Appl. Phys. Lett. 51, 406–408 (1987).
[CrossRef]

Steinberg, A. M.

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, M. D. Petroff, “High efficiency single-photon detectors,” Phys. Rev. A 48, R867 (1993).
[CrossRef] [PubMed]

A. M. Steinberg, P. G. Kwiat, R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[CrossRef] [PubMed]

Tapster, P. R.

J. G. Rarity, P. R. Tapster, J. A. Levenson, J. C. Garreau, I. Abram, J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, E. Giacobino, “Quantum correlated twin beams,” Appl. Phys. B 55, 250–257 (1992).
[CrossRef]

J. G. Rarity, K. D. Ridley, P. R. Tapster, “Absolute measurement of detector quantum efficiency using parametric downconversion,” Appl. Opt. 26, 4616–4619 (1987).
[CrossRef] [PubMed]

Trottier, C.

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon counting modules using RCA silicon avalanche photodiodes,” Electron. Eng. 61, 37–47 (1989).

Trottier, C. J.

L. Q. Li, L. M. Davis, S. I. Soltesz, C. J. Trottier, “Single-photon avalanche diode for single molecule detection,” in OSA Annual Meeting, Vol. 23 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992).

Webb, P. P.

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon counting modules using RCA silicon avalanche photodiodes,” Electron. Eng. 61, 37–47 (1989).

Yariv, A.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988), Chap. 7, p. 430.

Appl. Opt. (1)

Appl. Phys. B (1)

J. G. Rarity, P. R. Tapster, J. A. Levenson, J. C. Garreau, I. Abram, J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, E. Giacobino, “Quantum correlated twin beams,” Appl. Phys. B 55, 250–257 (1992).
[CrossRef]

Appl. Phys. Lett. (1)

M. D. Petroff, M. G. Stapelbroek, W. A. Kleinhans, “Detection of individual 0.4–28 μm wavelength photons via impurity-impact ionization in a solid-state photomultiplier,” Appl. Phys. Lett. 51, 406–408 (1987).
[CrossRef]

Electron. Eng. (1)

A. W. Lightstone, A. D. MacGregor, D. E. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon counting modules using RCA silicon avalanche photodiodes,” Electron. Eng. 61, 37–47 (1989).

IEEE Trans. Electron. Devices (1)

R. J. McIntyre, “On the avalanche initiation probability of avalanche diodes above the breakdown voltage,” IEEE Trans. Electron. Devices 20, 637–641 (1973).
[CrossRef]

Phys. Rev. A (2)

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, M. D. Petroff, “High efficiency single-photon detectors,” Phys. Rev. A 48, R867 (1993).
[CrossRef] [PubMed]

C. K. Hong, L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31, 2409–2418 (1985).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

A. M. Steinberg, P. G. Kwiat, R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[CrossRef] [PubMed]

Sov. J. Quantum Electron. (1)

D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112–1116 (1980).
[CrossRef]

Other (8)

Because of saturation effects (arising from intrinsic dead time in the devices), the efficiency actually depends on the incident light intensity (see Section 8 in the text). However, for simplicity we use η to denote the efficiency in the low-light limit.

H. Z. Cummins, E. R. Pike, eds., Photon Correlation and Light Beating Spectroscopy (Plenum, New York, 1974).

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988), Chap. 7, p. 430.

L. Q. Li, L. M. Davis, S. I. Soltesz, C. J. Trottier, “Single-photon avalanche diode for single molecule detection,” in OSA Annual Meeting, Vol. 23 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992).

At one point a fast oscilloscope (triggered on the trigger-detector output) was used to observe the coincidence pulses. No precursors were observed, but two of the ten coincident pulses were delayed by ~20 ns relative to the other eight. The probability of these being accidental is very small. However, these postcursors were not seen on a second scope trace with 14 coincidence events displayed.

A. D. MacGregor, Optoelectronics Division, EG&G Canada, Ltd., 22001 Dumberry, Vaudreuil J7V 8P7, Canada (personal communication, 1992).

R. J. McIntyre, Optoelectronics Division, EG&G Canada, Ltd., 22001, Dumberry, Vaudreuil J7V 8P7, Canada (personal communication, 1993).

A secondary measurement revealed that the reflection intensity off the crystal input face (coated for low loss at 351 nm) was (3.37 ± 0.38)%. In a few of the runs the crystal was accidentally inserted backward; in these cases, the reflection losses are those from the 351-nm coating. This correction is included in Table 1, where appropriate.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a typical experimental setup (see text for details).

Fig. 2
Fig. 2

Uncorrected SSPM efficiency, as a function of device-bias voltage, for fixed amplifier bias and discriminator threshold. It was not possible to check higher bias voltages because these caused the electronics to suffer frequent latch up.

Fig. 3
Fig. 3

Plot of uncorrected detector efficiency (at 702 nm) versus single count rate. The SSPM had a spherical mirror in place. Curves are linear fits. True efficiencies are obtained by correction for crystal losses (caused by reflection13 and scattering or absorption), for losses at intervening optics, and for the SSPM, nonoptimal biasing.

Fig. 4
Fig. 4

Typical time-correlation profiles. (a) Coincidences between two SPCM’s, with singles rates of 70 and 250 KHz. The SCA window corresponded to 100 ps; widths as low as 300 ps were seen at lower count rates. (b) Coincidences between a SSPM at a singles rate of 50 kHz and a trigger SPCM at 255 Hz. The SCA window corresponded to 1.0 ns; the spherical mirror was not in place for these measurements.

Fig. 5
Fig. 5

Temporal autocorrelation profile of an SPCM, demonstrating afterpulsing. The solid curve is an exponential fit to the data beyond the dead-time region (~3 μs). The singles rate was 340 s−1; total duration of measurement was 95,029 s.

Tables (2)

Tables Icon

Table 1 Cone Divergence Angles and Conjugate Wavelengths for Downconverted Light (Pump Wavelength, 351.1 nm)

Tables Icon

Table 2 Corrected Single-Photon Absolute Detection Efficiencies of Two SSPM’s and Two SPCM’s

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

η c d = 1 η c p C A S t r BG BG t .
Δ η c η c = [ ( 1 η c ) C ( C A ) 2 + 2 BG t ( S t BG t ) 2 ] 1 / 2 .
A = [ N t ( 1 η c ) + BG t r BG ] [ N c ( 1 η t ) + BG c r BG ] w T = ( S t η c N t ) ( S c η t N c ) w T ,
A [ S c S t η c S c ( S t BG t r BG ) ] w T .
η c = C A S t r BG BG t .
η c = C A C + α r BG BG t ,
( Δ η c ) 2 = ( η C C ) 2 ( Δ C ) 2 + ( η c α ) 2 ( Δ α ) 2 + ( η c BG t ) 2 ( Δ BG t ) 2 = [ C + α r BG BG t C + A ( C + α r BG BG t ) 2 ] 2 C + [ C A ( C + α r BG BG t ) 2 ] 2 α + [ r BG ( C A ) ( C + α r BG BG t ) 2 ] 2 BG t .
( Δ η c η c ) 2 = 1 ( C A ) 2 [ ( 1 η c ) 2 C + η c 2 α + r BG 2 η c 2 BG t ] = 1 ( C A ) 2 [ ( 1 η c ) C + r BG ( 1 + r BG ) η c 2 BG t ] .
Δ η c η c = { 1 ( C A ) 2 [ ( 1 η c ) C + r BG ( 1 + r BG ) η c 2 BG t ] } 1 / 2 .
Δ η c η c = [ ( 1 η c ) C ( C A ) 2 + 2 BG t ( S t BG t ) 2 ] 1 / 2 .

Metrics