Abstract

Experimental results of self-imaging in optical fibers are reported along with an analytical model that explains the observations. Some implications for sensor design are discussed.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Brewster, “Patent documents for the kaleidoscope,” British patent specification4136 (27August1817).
  2. J. H. Myer, “Zoomable kaleidoscopic mirror tunnel,” Appl. Opt. 10, 2179–2182 (1971).
    [CrossRef] [PubMed]
  3. R. Ulrich, G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27, 337–339 (1975).
    [CrossRef]
  4. O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Am. 63, 416–419 (1973).
    [CrossRef]
  5. O. Bryngdahl, W. Lee, “On light distribution in optical waveguides,” J. Opt. Soc. Am. 68, 310–315 (1978).
    [CrossRef]
  6. R. Ishikawa, H. Nishimoto, K. Minemura, S. Matsushita, “Kaleidoscope micro-optic star coupler,” Electron. Lett. 16, 249–251 (1980).
    [CrossRef]
  7. K. Iwasaki, T. Hayashi, T. Goto, S. Shimizu, “Square and uniform laser output device: theory and applications,” Appl. Opt. 29, 1736–1744 (1990).
    [CrossRef] [PubMed]
  8. R. E. Grojean, D. Feldman, J. R. Roach, “Production of flat top beam profiles for high energy laser,” Rev. Sci. Instrum. 51, 375–376 (1980).
    [CrossRef] [PubMed]
  9. J. M. Geary, “Channel integrator for laser beam uniformity on target,” Opt. Eng. 27, 972–977 (1988).
  10. C. Iverson, “Project summary—Los Alamos National Laboratory Support Program,” 10282-20132034 S-766-R (EG&G, Goleta, Calif., 1983).
  11. S. W. Allison, G. T. Gillies, T. Pagano, D. W. Magnuson, “Study of pulsed laser damage to optical fibers,” Appl. Opt. 24, 3140–3147 (1985).
    [CrossRef] [PubMed]
  12. W. H. Beyer, ed., Standard Mathematical Tables, 27th ed. (CRC, Boca Raton, Fla., 1984), p. 139.

1990 (1)

1988 (1)

J. M. Geary, “Channel integrator for laser beam uniformity on target,” Opt. Eng. 27, 972–977 (1988).

1985 (1)

1980 (2)

R. E. Grojean, D. Feldman, J. R. Roach, “Production of flat top beam profiles for high energy laser,” Rev. Sci. Instrum. 51, 375–376 (1980).
[CrossRef] [PubMed]

R. Ishikawa, H. Nishimoto, K. Minemura, S. Matsushita, “Kaleidoscope micro-optic star coupler,” Electron. Lett. 16, 249–251 (1980).
[CrossRef]

1978 (1)

1975 (1)

R. Ulrich, G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27, 337–339 (1975).
[CrossRef]

1973 (1)

1971 (1)

Allison, S. W.

Ankele, G.

R. Ulrich, G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27, 337–339 (1975).
[CrossRef]

Brewster, D.

D. Brewster, “Patent documents for the kaleidoscope,” British patent specification4136 (27August1817).

Bryngdahl, O.

Feldman, D.

R. E. Grojean, D. Feldman, J. R. Roach, “Production of flat top beam profiles for high energy laser,” Rev. Sci. Instrum. 51, 375–376 (1980).
[CrossRef] [PubMed]

Geary, J. M.

J. M. Geary, “Channel integrator for laser beam uniformity on target,” Opt. Eng. 27, 972–977 (1988).

Gillies, G. T.

Goto, T.

Grojean, R. E.

R. E. Grojean, D. Feldman, J. R. Roach, “Production of flat top beam profiles for high energy laser,” Rev. Sci. Instrum. 51, 375–376 (1980).
[CrossRef] [PubMed]

Hayashi, T.

Ishikawa, R.

R. Ishikawa, H. Nishimoto, K. Minemura, S. Matsushita, “Kaleidoscope micro-optic star coupler,” Electron. Lett. 16, 249–251 (1980).
[CrossRef]

Iverson, C.

C. Iverson, “Project summary—Los Alamos National Laboratory Support Program,” 10282-20132034 S-766-R (EG&G, Goleta, Calif., 1983).

Iwasaki, K.

Lee, W.

Magnuson, D. W.

Matsushita, S.

R. Ishikawa, H. Nishimoto, K. Minemura, S. Matsushita, “Kaleidoscope micro-optic star coupler,” Electron. Lett. 16, 249–251 (1980).
[CrossRef]

Minemura, K.

R. Ishikawa, H. Nishimoto, K. Minemura, S. Matsushita, “Kaleidoscope micro-optic star coupler,” Electron. Lett. 16, 249–251 (1980).
[CrossRef]

Myer, J. H.

Nishimoto, H.

R. Ishikawa, H. Nishimoto, K. Minemura, S. Matsushita, “Kaleidoscope micro-optic star coupler,” Electron. Lett. 16, 249–251 (1980).
[CrossRef]

Pagano, T.

Roach, J. R.

R. E. Grojean, D. Feldman, J. R. Roach, “Production of flat top beam profiles for high energy laser,” Rev. Sci. Instrum. 51, 375–376 (1980).
[CrossRef] [PubMed]

Shimizu, S.

Ulrich, R.

R. Ulrich, G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27, 337–339 (1975).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

R. Ulrich, G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27, 337–339 (1975).
[CrossRef]

Electron. Lett. (1)

R. Ishikawa, H. Nishimoto, K. Minemura, S. Matsushita, “Kaleidoscope micro-optic star coupler,” Electron. Lett. 16, 249–251 (1980).
[CrossRef]

J. Opt. Soc. Am. (2)

Opt. Eng. (1)

J. M. Geary, “Channel integrator for laser beam uniformity on target,” Opt. Eng. 27, 972–977 (1988).

Rev. Sci. Instrum. (1)

R. E. Grojean, D. Feldman, J. R. Roach, “Production of flat top beam profiles for high energy laser,” Rev. Sci. Instrum. 51, 375–376 (1980).
[CrossRef] [PubMed]

Other (3)

D. Brewster, “Patent documents for the kaleidoscope,” British patent specification4136 (27August1817).

C. Iverson, “Project summary—Los Alamos National Laboratory Support Program,” 10282-20132034 S-766-R (EG&G, Goleta, Calif., 1983).

W. H. Beyer, ed., Standard Mathematical Tables, 27th ed. (CRC, Boca Raton, Fla., 1984), p. 139.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram showing how the propagation of reflected rays in a point-source illuminated optical fiber can result in a self-imaged pattern of concentric rings: N, number of reflections; L, length of fiber; tan α0 = d/2L, tan α1 = 3d/2L, tan α2 = 5d/2L, tan αN = (N+ 1/2)d/L.

Fig. 2
Fig. 2

Block diagram of the experimental arrangement used to observe the self-imaging phenomenon.

Fig. 3
Fig. 3

Photograph of the self-imaging resulting from axial, point-source illumination of a 1-mm-diameter, 15-mm-long optical fiber.

Fig. 4
Fig. 4

Schematic diagram showing a ray trace of a nonaxial light source through an optical fiber and lens.

Tables (2)

Tables Icon

Table 1 Estimated Angular Locations of Concentric Rings Formed by Self-Imaging in an Optical Fibera

Tables Icon

Table 2 Position of Self-images of a Source S Depicted in Fig. 4.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

tan α N = ( N + 1 / 2 ) ( d / L ) .
NA = N core sin θ c .
α N = arctan [ ( N + 1 / 2 ) ( d / L ) ] < arcsin ( NA / N core ) .
( N + 1 / 2 ) ( d / L ) < ( NA / N core ) / [ 1 ( NA / N core ) 2 ] 1 / 2 .

Metrics