Abstract

The radiant intensity of VUV emission lines of a high-current hollow-cathode source has been determined for the 40–125-nm spectral range. The source is operated at a constant current of 1 A with an aluminum cathode. Different rare gases are alternatively used as the buffer gas at pressures of ~ 100 Pa. The radiant intensity has been determined by comparison with the calculable spectral radiant flux of the electron storage ring BESSY. Radiant intensities of the emission lines are in the 7–1400-μW/sr range. The long-term reproducibility of the radiant intensity of the source is within ± 10% (2σ value). The systematic uncertainty of the radiometric calibration is better than 9% (3σvalue).

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kühne, B. Wende, “VUV and soft x-ray radiometry,” J. Phys. E. 18, 637–647 (1985).
    [CrossRef]
  2. M. Kühne, D. Stuck, E. Tegeler, “BRV-continuum source as a radiometric transfer standard between 40 nm and 600 nm,” Appl. Opt. 21, 3919–3922 (1982).
    [CrossRef] [PubMed]
  3. J. Fischer, M. Kühne, B. Wende, “Laser produced plasmas as radiometric transfer-standard sources for the vacuum-ultraviolet and the soft x-ray range,” Metrologia 23, 179–186 (1986/87).
    [CrossRef]
  4. M. Kühne, R. Thornagel, “Soft x-ray emission from a laser produced carbon plasma,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds., Vol. 68 of Optical Sciences (Springer-Verlag, New York, 1992).
  5. J. S. Risley, W. B. Westerveld, “Electron-atom source as a primary radiometric standard for the EUV spectral region,” Appl. Opt. 28, 389–400 (1989).
    [CrossRef] [PubMed]
  6. W. Jans, “Messung absoluter Wirkungsquerschnitte der elektronenstossinduzierten Linienemission von Edelgasen und Stickstoff in Spektralbereich von 40–120 nm,” thesis (Technical University Berlin, Berlin, 1993).
  7. K. Danzmann, J. Fischer, M. Kuihne, “A high current hollow cathode as a source of intense line radiation in the VUV,” J. Phys. D. 18, 1299–1305 (1985).
    [CrossRef]
  8. K. Danzmann, M. Günther, J. Fischer, M. Kock, M. Kühne, “High current hollow cathode as a radiometric transfer standard source for the extreme vacuum ultraviolet,” Appl. Opt. 27, 4947–4951 (1988).
    [CrossRef] [PubMed]
  9. J. Fischer, M. Kühne, B. Wende, “Spectral radiant power measurements of VUV and soft x-ray sources using the electron storage ring BESSY as a radiometric standard source,” Appl. Opt. 23, 4252–4260 (1984).
    [CrossRef] [PubMed]
  10. J. Hollandt, W. Jans, M. Kühne, F. Lindenlauf, B. Wende, “A beamline for radiant power measurements of vacuum ultraviolet and ultraviolet sources in the wavelength range from 40 nm to 400 nm,” Rev. Sci. Instrum. 63, 1278–1281 (1992).
    [CrossRef]
  11. J. Schwinger, “On the classical radiation of accelerated electrons,” Phys. Rev. 75, 1912–1925 (1949).
    [CrossRef]
  12. F. Riehle, B. Wende, “Electron storage ring BESSY as a radiometric source of calculable spectral radiant power between 0.5 and 1000 nm,” Opt. Lett. 10, 365–367 (1985).
    [CrossRef] [PubMed]
  13. If necessary a significantly smaller uncertainty of the radiant flux of synchrotron radiation can be reached. For details see D. Arnold, G. Ulm, “Electron storage ring BESSY as a source of calculable spectral photon flux in the x-ray region,” Rev. Sci. Instrum. 63, 1539–1542 (1992).
    [CrossRef]
  14. For the Ne II 40.59/40.71-nm lines, which have been calibrated only with the osmium mirror, the influence of stray light and a smaller signal-to-noise ratio leads to a larger overall uncertainty of ~ 30%.
  15. For information on the availability of the DKK source please contact Prof. M. Kock, Institut für Plasmaphysik, Universität Hannover, Callinstrasse 38, D-30167 Hannover 1, Germany.
  16. E. Tegeler, “Determination of the spectral radiance of deuterium lamps using the electron storage ring BESSY as a primary radiometric standard,” Nucl. Instrum. Methods A 282, 706–713 (1989).
    [CrossRef]
  17. J. Hollandt, M. Kühne, M. C. E. Huber, “Radiometric calibration of solar space telescopes: the development of a vacuum-ultraviolet transfer source standard,” ESA Bull. 69, 78–89 (1992).

1992 (3)

J. Hollandt, W. Jans, M. Kühne, F. Lindenlauf, B. Wende, “A beamline for radiant power measurements of vacuum ultraviolet and ultraviolet sources in the wavelength range from 40 nm to 400 nm,” Rev. Sci. Instrum. 63, 1278–1281 (1992).
[CrossRef]

If necessary a significantly smaller uncertainty of the radiant flux of synchrotron radiation can be reached. For details see D. Arnold, G. Ulm, “Electron storage ring BESSY as a source of calculable spectral photon flux in the x-ray region,” Rev. Sci. Instrum. 63, 1539–1542 (1992).
[CrossRef]

J. Hollandt, M. Kühne, M. C. E. Huber, “Radiometric calibration of solar space telescopes: the development of a vacuum-ultraviolet transfer source standard,” ESA Bull. 69, 78–89 (1992).

1989 (2)

E. Tegeler, “Determination of the spectral radiance of deuterium lamps using the electron storage ring BESSY as a primary radiometric standard,” Nucl. Instrum. Methods A 282, 706–713 (1989).
[CrossRef]

J. S. Risley, W. B. Westerveld, “Electron-atom source as a primary radiometric standard for the EUV spectral region,” Appl. Opt. 28, 389–400 (1989).
[CrossRef] [PubMed]

1988 (1)

1985 (3)

K. Danzmann, J. Fischer, M. Kuihne, “A high current hollow cathode as a source of intense line radiation in the VUV,” J. Phys. D. 18, 1299–1305 (1985).
[CrossRef]

M. Kühne, B. Wende, “VUV and soft x-ray radiometry,” J. Phys. E. 18, 637–647 (1985).
[CrossRef]

F. Riehle, B. Wende, “Electron storage ring BESSY as a radiometric source of calculable spectral radiant power between 0.5 and 1000 nm,” Opt. Lett. 10, 365–367 (1985).
[CrossRef] [PubMed]

1984 (1)

1982 (1)

1949 (1)

J. Schwinger, “On the classical radiation of accelerated electrons,” Phys. Rev. 75, 1912–1925 (1949).
[CrossRef]

Arnold, D.

If necessary a significantly smaller uncertainty of the radiant flux of synchrotron radiation can be reached. For details see D. Arnold, G. Ulm, “Electron storage ring BESSY as a source of calculable spectral photon flux in the x-ray region,” Rev. Sci. Instrum. 63, 1539–1542 (1992).
[CrossRef]

Danzmann, K.

K. Danzmann, M. Günther, J. Fischer, M. Kock, M. Kühne, “High current hollow cathode as a radiometric transfer standard source for the extreme vacuum ultraviolet,” Appl. Opt. 27, 4947–4951 (1988).
[CrossRef] [PubMed]

K. Danzmann, J. Fischer, M. Kuihne, “A high current hollow cathode as a source of intense line radiation in the VUV,” J. Phys. D. 18, 1299–1305 (1985).
[CrossRef]

Fischer, J.

K. Danzmann, M. Günther, J. Fischer, M. Kock, M. Kühne, “High current hollow cathode as a radiometric transfer standard source for the extreme vacuum ultraviolet,” Appl. Opt. 27, 4947–4951 (1988).
[CrossRef] [PubMed]

J. Fischer, M. Kühne, B. Wende, “Laser produced plasmas as radiometric transfer-standard sources for the vacuum-ultraviolet and the soft x-ray range,” Metrologia 23, 179–186 (1986/87).
[CrossRef]

K. Danzmann, J. Fischer, M. Kuihne, “A high current hollow cathode as a source of intense line radiation in the VUV,” J. Phys. D. 18, 1299–1305 (1985).
[CrossRef]

J. Fischer, M. Kühne, B. Wende, “Spectral radiant power measurements of VUV and soft x-ray sources using the electron storage ring BESSY as a radiometric standard source,” Appl. Opt. 23, 4252–4260 (1984).
[CrossRef] [PubMed]

Günther, M.

Hollandt, J.

J. Hollandt, W. Jans, M. Kühne, F. Lindenlauf, B. Wende, “A beamline for radiant power measurements of vacuum ultraviolet and ultraviolet sources in the wavelength range from 40 nm to 400 nm,” Rev. Sci. Instrum. 63, 1278–1281 (1992).
[CrossRef]

J. Hollandt, M. Kühne, M. C. E. Huber, “Radiometric calibration of solar space telescopes: the development of a vacuum-ultraviolet transfer source standard,” ESA Bull. 69, 78–89 (1992).

Huber, M. C. E.

J. Hollandt, M. Kühne, M. C. E. Huber, “Radiometric calibration of solar space telescopes: the development of a vacuum-ultraviolet transfer source standard,” ESA Bull. 69, 78–89 (1992).

Jans, W.

J. Hollandt, W. Jans, M. Kühne, F. Lindenlauf, B. Wende, “A beamline for radiant power measurements of vacuum ultraviolet and ultraviolet sources in the wavelength range from 40 nm to 400 nm,” Rev. Sci. Instrum. 63, 1278–1281 (1992).
[CrossRef]

W. Jans, “Messung absoluter Wirkungsquerschnitte der elektronenstossinduzierten Linienemission von Edelgasen und Stickstoff in Spektralbereich von 40–120 nm,” thesis (Technical University Berlin, Berlin, 1993).

Kock, M.

Kühne, M.

J. Hollandt, W. Jans, M. Kühne, F. Lindenlauf, B. Wende, “A beamline for radiant power measurements of vacuum ultraviolet and ultraviolet sources in the wavelength range from 40 nm to 400 nm,” Rev. Sci. Instrum. 63, 1278–1281 (1992).
[CrossRef]

J. Hollandt, M. Kühne, M. C. E. Huber, “Radiometric calibration of solar space telescopes: the development of a vacuum-ultraviolet transfer source standard,” ESA Bull. 69, 78–89 (1992).

K. Danzmann, M. Günther, J. Fischer, M. Kock, M. Kühne, “High current hollow cathode as a radiometric transfer standard source for the extreme vacuum ultraviolet,” Appl. Opt. 27, 4947–4951 (1988).
[CrossRef] [PubMed]

J. Fischer, M. Kühne, B. Wende, “Laser produced plasmas as radiometric transfer-standard sources for the vacuum-ultraviolet and the soft x-ray range,” Metrologia 23, 179–186 (1986/87).
[CrossRef]

M. Kühne, B. Wende, “VUV and soft x-ray radiometry,” J. Phys. E. 18, 637–647 (1985).
[CrossRef]

J. Fischer, M. Kühne, B. Wende, “Spectral radiant power measurements of VUV and soft x-ray sources using the electron storage ring BESSY as a radiometric standard source,” Appl. Opt. 23, 4252–4260 (1984).
[CrossRef] [PubMed]

M. Kühne, D. Stuck, E. Tegeler, “BRV-continuum source as a radiometric transfer standard between 40 nm and 600 nm,” Appl. Opt. 21, 3919–3922 (1982).
[CrossRef] [PubMed]

M. Kühne, R. Thornagel, “Soft x-ray emission from a laser produced carbon plasma,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds., Vol. 68 of Optical Sciences (Springer-Verlag, New York, 1992).

Kuihne, M.

K. Danzmann, J. Fischer, M. Kuihne, “A high current hollow cathode as a source of intense line radiation in the VUV,” J. Phys. D. 18, 1299–1305 (1985).
[CrossRef]

Lindenlauf, F.

J. Hollandt, W. Jans, M. Kühne, F. Lindenlauf, B. Wende, “A beamline for radiant power measurements of vacuum ultraviolet and ultraviolet sources in the wavelength range from 40 nm to 400 nm,” Rev. Sci. Instrum. 63, 1278–1281 (1992).
[CrossRef]

Riehle, F.

Risley, J. S.

Schwinger, J.

J. Schwinger, “On the classical radiation of accelerated electrons,” Phys. Rev. 75, 1912–1925 (1949).
[CrossRef]

Stuck, D.

Tegeler, E.

E. Tegeler, “Determination of the spectral radiance of deuterium lamps using the electron storage ring BESSY as a primary radiometric standard,” Nucl. Instrum. Methods A 282, 706–713 (1989).
[CrossRef]

M. Kühne, D. Stuck, E. Tegeler, “BRV-continuum source as a radiometric transfer standard between 40 nm and 600 nm,” Appl. Opt. 21, 3919–3922 (1982).
[CrossRef] [PubMed]

Thornagel, R.

M. Kühne, R. Thornagel, “Soft x-ray emission from a laser produced carbon plasma,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds., Vol. 68 of Optical Sciences (Springer-Verlag, New York, 1992).

Ulm, G.

If necessary a significantly smaller uncertainty of the radiant flux of synchrotron radiation can be reached. For details see D. Arnold, G. Ulm, “Electron storage ring BESSY as a source of calculable spectral photon flux in the x-ray region,” Rev. Sci. Instrum. 63, 1539–1542 (1992).
[CrossRef]

Wende, B.

J. Hollandt, W. Jans, M. Kühne, F. Lindenlauf, B. Wende, “A beamline for radiant power measurements of vacuum ultraviolet and ultraviolet sources in the wavelength range from 40 nm to 400 nm,” Rev. Sci. Instrum. 63, 1278–1281 (1992).
[CrossRef]

J. Fischer, M. Kühne, B. Wende, “Laser produced plasmas as radiometric transfer-standard sources for the vacuum-ultraviolet and the soft x-ray range,” Metrologia 23, 179–186 (1986/87).
[CrossRef]

M. Kühne, B. Wende, “VUV and soft x-ray radiometry,” J. Phys. E. 18, 637–647 (1985).
[CrossRef]

F. Riehle, B. Wende, “Electron storage ring BESSY as a radiometric source of calculable spectral radiant power between 0.5 and 1000 nm,” Opt. Lett. 10, 365–367 (1985).
[CrossRef] [PubMed]

J. Fischer, M. Kühne, B. Wende, “Spectral radiant power measurements of VUV and soft x-ray sources using the electron storage ring BESSY as a radiometric standard source,” Appl. Opt. 23, 4252–4260 (1984).
[CrossRef] [PubMed]

Westerveld, W. B.

Appl. Opt. (4)

ESA Bull. (1)

J. Hollandt, M. Kühne, M. C. E. Huber, “Radiometric calibration of solar space telescopes: the development of a vacuum-ultraviolet transfer source standard,” ESA Bull. 69, 78–89 (1992).

J. Phys. D. (1)

K. Danzmann, J. Fischer, M. Kuihne, “A high current hollow cathode as a source of intense line radiation in the VUV,” J. Phys. D. 18, 1299–1305 (1985).
[CrossRef]

J. Phys. E. (1)

M. Kühne, B. Wende, “VUV and soft x-ray radiometry,” J. Phys. E. 18, 637–647 (1985).
[CrossRef]

Metrologia (1)

J. Fischer, M. Kühne, B. Wende, “Laser produced plasmas as radiometric transfer-standard sources for the vacuum-ultraviolet and the soft x-ray range,” Metrologia 23, 179–186 (1986/87).
[CrossRef]

Nucl. Instrum. Methods A (1)

E. Tegeler, “Determination of the spectral radiance of deuterium lamps using the electron storage ring BESSY as a primary radiometric standard,” Nucl. Instrum. Methods A 282, 706–713 (1989).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

J. Schwinger, “On the classical radiation of accelerated electrons,” Phys. Rev. 75, 1912–1925 (1949).
[CrossRef]

Rev. Sci. Instrum. (2)

If necessary a significantly smaller uncertainty of the radiant flux of synchrotron radiation can be reached. For details see D. Arnold, G. Ulm, “Electron storage ring BESSY as a source of calculable spectral photon flux in the x-ray region,” Rev. Sci. Instrum. 63, 1539–1542 (1992).
[CrossRef]

J. Hollandt, W. Jans, M. Kühne, F. Lindenlauf, B. Wende, “A beamline for radiant power measurements of vacuum ultraviolet and ultraviolet sources in the wavelength range from 40 nm to 400 nm,” Rev. Sci. Instrum. 63, 1278–1281 (1992).
[CrossRef]

Other (4)

M. Kühne, R. Thornagel, “Soft x-ray emission from a laser produced carbon plasma,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds., Vol. 68 of Optical Sciences (Springer-Verlag, New York, 1992).

W. Jans, “Messung absoluter Wirkungsquerschnitte der elektronenstossinduzierten Linienemission von Edelgasen und Stickstoff in Spektralbereich von 40–120 nm,” thesis (Technical University Berlin, Berlin, 1993).

For the Ne II 40.59/40.71-nm lines, which have been calibrated only with the osmium mirror, the influence of stray light and a smaller signal-to-noise ratio leads to a larger overall uncertainty of ~ 30%.

For information on the availability of the DKK source please contact Prof. M. Kock, Institut für Plasmaphysik, Universität Hannover, Callinstrasse 38, D-30167 Hannover 1, Germany.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Longitudinal section of the DKK HC source with an integrated two-stage differential pumping system.

Fig. 2
Fig. 2

Radiometric long-term reproducibility of the Kr i 123.58-nm emission line. Starting with argon, the buffer gas was changed several times during operation. After 30 h of operation the HC was cleaned to remove sputtered aluminum and the cathode insert was replaced.

Fig. 3
Fig. 3

Dependence of the radiant intensity on the discharge current of several HC emission lines. While the radiant intensity of the two neutral gas lines varies only weakly with the discharge current, the radiant intensity of the buffer gas ions increases approximately linearly and quadratically with the discharge current.

Fig. 4
Fig. 4

Schematic drawing of the experimental setup for radiometric calibration of the HC source by comparing the unknown radiant flux of the HC emission lines with the calculable spectral radiant flux of the storage ring BESSY.

Fig. 5
Fig. 5

Spectral responsivity s(λ) of the instrumentation according to Eq. (3) for differently coated imaging mirrors.

Fig. 6
Fig. 6

Fraction of the total detected synchrotron radiation signal that is due to second-order radiation for differently coated imaging mirrors.

Tables (4)

Tables Icon

Table 1 Purity and Typical Pressure of the Employed Buffer Gases when the HC Source was Operated at 1 A and 500 Va

Tables Icon

Table 2 Radiant Intensity of the Ar i 106.67-nm Emission Line when the Beam Line was Calibrated with Different Optical Configurationsa

Tables Icon

Table 3 Radiant Intensity for Selected HC Emission Linesa

Tables Icon

Table 4 Contributions to the Systematic Relative Uncertainty of Radiant Intensity I HC for Two Differently Coated Imaging Mirrors in the Calibration Beam Line

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Φ HC = Φ λ HC ( λ ) d λ = [ i 0 HC ( λ ) / i 0 Sr ( λ ) ] Φ λ SR ( λ ) F 0 ( λ ) d λ ,
Φ HC = Φ λ HC ( λ ) d λ = [ i 90 HC ( λ ) / i 90 SR ( λ ) ] Φ λ SR ( λ ) F 90 ( λ ) d λ ,
F 0 ( λ ) = 1 + [ i 0 SR ( λ ) - i 90 SR ( λ ) ] / [ i 0 SR ( λ ) + i 90 SR ( λ ) ] ,
F 90 ( λ ) = 1 - [ i 0 SR ( λ ) - i 90 SR ( λ ) ] / [ i 0 SR ( λ ) + i 90 SR ( λ ) ] .
s ( λ ) [ i 0 SR ( λ ) + i 90 SR ( λ ) ] / [ 2 Φ λ SR ( λ ) Δ λ ] ,
Φ HC = [ 2 Φ λ SR i HC ( λ ) d λ ] / [ i 0 SR ( λ ) + i 90 SR ( λ ) ] = [ i HC ( λ ) d λ ] / ( s ( λ ) Δ λ ) .
I HC = Φ HC / Ω ,             L HC = Φ HC / ( Ω A ) .
Δ I HC / I HC = { ( Δ Φ λ SR / Φ λ SR ) 2 + [ Δ ( i HC / i SR ) / ( i HC / i SR ) ] 2 + ( Δ F / F ) 2 + ( Δ Ω / Ω ) 2 + ( Δ r / r ) 2 + ( Δ a / a ) 2 } 1 / 2 .

Metrics