Abstract

A thin-film, metal-dielectric coating is described that can be used as a nearly ideal IR absorber for ferroelectric and related IR detectors. This coating can provide an absorption of greater than 98% for IR wavelengths over a two-to-one spectral band. The theory and optical design are presented along with measured data for several experimental absorbers. The agreement between theory and experiment is excellent.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Woltersdorff, “Ueber die optischen Konstanten duenner Metallschichten im langwelligen Ultrarot,” Z. Phys. 99, 230–252 (1934).
  2. L. N. Hadley, D. M. Dennison, “Reflection and transmission interference filters part I. Theory,” J. Opt. Soc. Am. 37, 451–465 (1947).
    [CrossRef] [PubMed]
  3. L. N. Hadley, D. M. Dennison, “Reflection and transmission interference filters part II. Experimental, comparison with theory, results,” J. Opt. Soc. Am. 38, 483–496 (1948).
    [CrossRef] [PubMed]
  4. L. Harris, J. K. Beasley, A. L. Loeb, “Reflection and transmission of radiation by metal films and the influence of nonabsorbing backings,” J. Opt. Soc. Am. 41, 604–614 (1951).
    [CrossRef]
  5. C. Hilsum, “Infrared absorption of thin metal films,” J. Opt. Soc. Am. 44, 188–191 (1954).
    [CrossRef]
  6. G. Hass, W. R. Hunter, “Laboratory experiments to study surface contamination and degradation of optical coatings and materials in simulated space environments,” Appl. Opt. 9, 2101–2110 (1970).
    [CrossRef] [PubMed]
  7. E. F. Idczak, “Optical properties of double metallic films,” Opt. Spectrosc. 22, 507–509 (1967.).
  8. P. J. Silberg, “Infrared absorption of three-layer films,” J. Opt. Soc. Am. 47, 575–578 (1957).
    [CrossRef]
  9. A. D. Parsons, J. J. Peddler, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686–1689 (1988).
    [CrossRef]
  10. G. Hass, H. H. Schroeder, A. F. Turner, “Mirror coatings for low visible and high infrared reflectance,” J. Opt. Soc. Am. 46, 31–35 (1956).
    [CrossRef]
  11. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1965).
  12. R. E. Hummel, Electronic Properties of Materials (Springer-Verlag, New York, 1992).
  13. F. Seitz, The Modern Theory of Solids (McGraw-Hill, New York, 1940).
  14. Parylene is Union Carbide Corporation’s trade name for p-xylyene polymers vapor deposited near room temperature by the Gorham process.

1988 (1)

A. D. Parsons, J. J. Peddler, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686–1689 (1988).
[CrossRef]

1970 (1)

1967 (1)

E. F. Idczak, “Optical properties of double metallic films,” Opt. Spectrosc. 22, 507–509 (1967.).

1957 (1)

1956 (1)

1954 (1)

1951 (1)

1948 (1)

1947 (1)

1934 (1)

W. Woltersdorff, “Ueber die optischen Konstanten duenner Metallschichten im langwelligen Ultrarot,” Z. Phys. 99, 230–252 (1934).

Beasley, J. K.

Dennison, D. M.

Hadley, L. N.

Harris, L.

Hass, G.

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1965).

Hilsum, C.

Hummel, R. E.

R. E. Hummel, Electronic Properties of Materials (Springer-Verlag, New York, 1992).

Hunter, W. R.

Idczak, E. F.

E. F. Idczak, “Optical properties of double metallic films,” Opt. Spectrosc. 22, 507–509 (1967.).

Loeb, A. L.

Parsons, A. D.

A. D. Parsons, J. J. Peddler, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686–1689 (1988).
[CrossRef]

Peddler, J. J.

A. D. Parsons, J. J. Peddler, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686–1689 (1988).
[CrossRef]

Schroeder, H. H.

Seitz, F.

F. Seitz, The Modern Theory of Solids (McGraw-Hill, New York, 1940).

Silberg, P. J.

Turner, A. F.

Woltersdorff, W.

W. Woltersdorff, “Ueber die optischen Konstanten duenner Metallschichten im langwelligen Ultrarot,” Z. Phys. 99, 230–252 (1934).

Appl. Opt. (1)

J. Opt. Soc. Am. (6)

J. Vac. Sci. Technol. A (1)

A. D. Parsons, J. J. Peddler, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686–1689 (1988).
[CrossRef]

Opt. Spectrosc. (1)

E. F. Idczak, “Optical properties of double metallic films,” Opt. Spectrosc. 22, 507–509 (1967.).

Z. Phys. (1)

W. Woltersdorff, “Ueber die optischen Konstanten duenner Metallschichten im langwelligen Ultrarot,” Z. Phys. 99, 230–252 (1934).

Other (4)

O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1965).

R. E. Hummel, Electronic Properties of Materials (Springer-Verlag, New York, 1992).

F. Seitz, The Modern Theory of Solids (McGraw-Hill, New York, 1940).

Parylene is Union Carbide Corporation’s trade name for p-xylyene polymers vapor deposited near room temperature by the Gorham process.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Layer configuration of a double-cavity absorber.

Fig. 2
Fig. 2

Comparison of double- and single-cavity absorbers.

Fig. 3
Fig. 3

Absorptance spectrum of a double-cavity absorber as computed directly from the design algorithm compared with one for which the central maximum is made to be 99%.

Fig. 4
Fig. 4

Comparison of the absorptance spectrum of a double-cavity absorber, for which dispersion of the optical constants was not taken into account, with spectra where dispersion was accounted for, before and after the layer thicknesses have been readjusted.

Fig. 5
Fig. 5

Comparison of double-cavity absorbers designed to have single- or double-absorptance maxima.

Fig. 6
Fig. 6

Measured absorptance spectrum of a double-cavity absorber made with nichrome and lead fluoride compared with a computed absorber for which dispersion in the optical constants of the nichrome and lead fluoride was used in the computations.

Fig. 7
Fig. 7

Measured absorptance of a double-cavity absorber made by Texas Instruments Inc. with nichrome, chromium/chromium oxide, and Parylene.

Fig. 8
Fig. 8

Computed absorptance spectra of a double-cavity absorber, with layer thicknesses designed for a 0-deg angle of incidence, at a 0-, 45-, and 60-deg angle of incidence.

Fig. 9
Fig. 9

Computed s- and p-reflectance components of a double-cavity absorber, with layer thicknesses designed for a 0-deg angle of incidence, as a function of angle of incidence.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n 1 = 1.66 , k 1 = 0 ( lead fluoride ) , n 2 = 11.42 , k 2 = 11.42 ( thin Nichrome ) , n 3 = 1.66 , k 3 = 0 ( lead fluoride ) , n s = 18.2 , k s = 18.2 ( thick Nichrome ) .
t 2 = 0.0162 μ m ,
t 1 = 1.20 μ m ,
t 3 = 1.17 μ m ,
t 2 = 0.0131 μ m .
t 1 = 1.207 μ m , t 2 = 0.0132 μ m , t 3 = 1.177 μ m .
NiCr ( layer 2 ) :             n = k = 3.61 λ , NiCr ( layer s ) :             n = k = 5.76 λ
n = - 0.0000439 λ 3 + 0.000147 λ 2 - 0.00309 λ + 1.72

Metrics