Abstract

We derived the transfer function for a white-light interferometric sensor based on highly birefringent (HB) fiber, assuming that both sensing and receiving interferometers are dispersive. This transfer function indicates that different responses to changes in the measurand may be observed depending on whether displacement of the contrast function or the interference fringes is detected. In the first case the sensitivity of the sensor is determined by the influence of the measurand on modal polarization dispersion while in the second case it depends on the influence of the measurand on modal birefringence of the HB fiber. This sensitivity difference limits the operation range of recently proposed zero-order fringe-tracking methods within which the unambiguous measurement is possible. The dispersion effects for a white-light interferometric strain sensor composed of York HB or Andrew E-type fiber as a sensing element and a quartz Wollaston prism as a receiving interferometer were studied experimentally. Sensitivities of modal polarization dispersion, modal birefringence, and chromatic dispersion of modal birefringence to the strain were determined for both types of sensing fiber. For these specific combinations of sensing/receiving interferometers we also determined the unambiguous measurement range for zero-order fringe-tracking techniques.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in Proceedings of the First International Conference on Optical Fiber Sensors (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 132–139.
  2. J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” IEEE J. Lightwave Technol. LT-3, 1062–1071 (1985).
    [CrossRef]
  3. A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Interferometric fiber optic sensor using a short coherence length source,” Electron. Lett. 23, 1110–1111 (1987).
    [CrossRef]
  4. S. Chen, A. J. Rogers, B. T. Meggitt, “Electronically scanned optical-fiber Young’s white-light interferometer,” Opt. Lett. 16, 761–763 (1991).
    [CrossRef] [PubMed]
  5. F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Coherence multiplexing of remote fiber optic Fabry–Perot sensing system,” Opt. Commun. 65, 319–321 (1987).
    [CrossRef]
  6. R. Dandliker, E. Zimmermann, G. Frosio, “Noise-resistant signal processing for electronically scanned white light interferometry,” in Proceedings of the Eighth International Conference on Optical Fiber Sensors (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 53–56.
    [CrossRef]
  7. S. Chen, B. T. Meggitt, A. J. Rogers, “Novel electronic scanner for coherence multiplexing in a quasi-distributed pressure sensor,” Electron. Lett. 26, 1367–1368 (1990).
    [CrossRef]
  8. W. J. Bock, W. Urbanczyk, M. Zaremba, “Electronically scanned white-light interferometric strain sensor employing HB fiber,” Opt. Commun. 101, 157–162 (1993).
    [CrossRef]
  9. V. Gusmeroli, P. Vavassori, M. Martinelli, “A coherence-multiplexed quasi-distributed polarimetric sensor suitable for structural monitoring,” in Proceedings of the Sixth International Conference on Optical Fiber SensorsH. J. Ardity, J. P. Dakin, R. Th. Kersten, eds. (Springer-Verlag, Berlin, 1989), pp. 513–518.
  10. M. Turpin, M. Brevignon, J. P. Le Pesant, O. Gaouditz, “Interfero-polarimetric fiber optic sensor for both pressure and temperature measurements,” in Proceedings of the Eighth International Conference on Optical Fiber Sensors (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 362–365.
    [CrossRef]
  11. S. C. Rashleigh, “Measurement of fiber birefringence by wavelength scanning: effect of dispersion,” Opt. Lett. 8, 336–339 (1983).
    [CrossRef] [PubMed]
  12. K. Okomoto, T. Hosaka, “Polarization dependent chromatic dispersion in birefringent optical fibers,” Opt. Lett. 12, 290–292 (1987).
    [CrossRef]
  13. W. J. Bock, W. Urbanczyk, “Measurement of polarization-mode dispersion and modal birefringence in HB fibers by means of electronically scanned shearing-type interferometry,” submitted to Appl. Opt.

1993 (1)

W. J. Bock, W. Urbanczyk, M. Zaremba, “Electronically scanned white-light interferometric strain sensor employing HB fiber,” Opt. Commun. 101, 157–162 (1993).
[CrossRef]

1991 (1)

1990 (1)

S. Chen, B. T. Meggitt, A. J. Rogers, “Novel electronic scanner for coherence multiplexing in a quasi-distributed pressure sensor,” Electron. Lett. 26, 1367–1368 (1990).
[CrossRef]

1987 (3)

K. Okomoto, T. Hosaka, “Polarization dependent chromatic dispersion in birefringent optical fibers,” Opt. Lett. 12, 290–292 (1987).
[CrossRef]

F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Coherence multiplexing of remote fiber optic Fabry–Perot sensing system,” Opt. Commun. 65, 319–321 (1987).
[CrossRef]

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Interferometric fiber optic sensor using a short coherence length source,” Electron. Lett. 23, 1110–1111 (1987).
[CrossRef]

1985 (1)

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” IEEE J. Lightwave Technol. LT-3, 1062–1071 (1985).
[CrossRef]

1983 (1)

Al-Chalabi, A. A.

A. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in Proceedings of the First International Conference on Optical Fiber Sensors (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 132–139.

Bock, W. J.

W. J. Bock, W. Urbanczyk, M. Zaremba, “Electronically scanned white-light interferometric strain sensor employing HB fiber,” Opt. Commun. 101, 157–162 (1993).
[CrossRef]

W. J. Bock, W. Urbanczyk, “Measurement of polarization-mode dispersion and modal birefringence in HB fibers by means of electronically scanned shearing-type interferometry,” submitted to Appl. Opt.

Brevignon, M.

M. Turpin, M. Brevignon, J. P. Le Pesant, O. Gaouditz, “Interfero-polarimetric fiber optic sensor for both pressure and temperature measurements,” in Proceedings of the Eighth International Conference on Optical Fiber Sensors (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 362–365.
[CrossRef]

Brooks, J. L.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” IEEE J. Lightwave Technol. LT-3, 1062–1071 (1985).
[CrossRef]

Chen, S.

S. Chen, A. J. Rogers, B. T. Meggitt, “Electronically scanned optical-fiber Young’s white-light interferometer,” Opt. Lett. 16, 761–763 (1991).
[CrossRef] [PubMed]

S. Chen, B. T. Meggitt, A. J. Rogers, “Novel electronic scanner for coherence multiplexing in a quasi-distributed pressure sensor,” Electron. Lett. 26, 1367–1368 (1990).
[CrossRef]

Culshaw, B.

A. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in Proceedings of the First International Conference on Optical Fiber Sensors (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 132–139.

Dandliker, R.

R. Dandliker, E. Zimmermann, G. Frosio, “Noise-resistant signal processing for electronically scanned white light interferometry,” in Proceedings of the Eighth International Conference on Optical Fiber Sensors (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 53–56.
[CrossRef]

Davies, D. E. N.

A. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in Proceedings of the First International Conference on Optical Fiber Sensors (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 132–139.

Farahi, F.

F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Coherence multiplexing of remote fiber optic Fabry–Perot sensing system,” Opt. Commun. 65, 319–321 (1987).
[CrossRef]

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Interferometric fiber optic sensor using a short coherence length source,” Electron. Lett. 23, 1110–1111 (1987).
[CrossRef]

Frosio, G.

R. Dandliker, E. Zimmermann, G. Frosio, “Noise-resistant signal processing for electronically scanned white light interferometry,” in Proceedings of the Eighth International Conference on Optical Fiber Sensors (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 53–56.
[CrossRef]

Gaouditz, O.

M. Turpin, M. Brevignon, J. P. Le Pesant, O. Gaouditz, “Interfero-polarimetric fiber optic sensor for both pressure and temperature measurements,” in Proceedings of the Eighth International Conference on Optical Fiber Sensors (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 362–365.
[CrossRef]

Gerges, A. S.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Interferometric fiber optic sensor using a short coherence length source,” Electron. Lett. 23, 1110–1111 (1987).
[CrossRef]

Gusmeroli, V.

V. Gusmeroli, P. Vavassori, M. Martinelli, “A coherence-multiplexed quasi-distributed polarimetric sensor suitable for structural monitoring,” in Proceedings of the Sixth International Conference on Optical Fiber SensorsH. J. Ardity, J. P. Dakin, R. Th. Kersten, eds. (Springer-Verlag, Berlin, 1989), pp. 513–518.

Hosaka, T.

Jackson, D. A.

F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Coherence multiplexing of remote fiber optic Fabry–Perot sensing system,” Opt. Commun. 65, 319–321 (1987).
[CrossRef]

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Interferometric fiber optic sensor using a short coherence length source,” Electron. Lett. 23, 1110–1111 (1987).
[CrossRef]

Jones, J. D. C.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Interferometric fiber optic sensor using a short coherence length source,” Electron. Lett. 23, 1110–1111 (1987).
[CrossRef]

F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Coherence multiplexing of remote fiber optic Fabry–Perot sensing system,” Opt. Commun. 65, 319–321 (1987).
[CrossRef]

Kim, B. Y.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” IEEE J. Lightwave Technol. LT-3, 1062–1071 (1985).
[CrossRef]

Le Pesant, J. P.

M. Turpin, M. Brevignon, J. P. Le Pesant, O. Gaouditz, “Interfero-polarimetric fiber optic sensor for both pressure and temperature measurements,” in Proceedings of the Eighth International Conference on Optical Fiber Sensors (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 362–365.
[CrossRef]

Martinelli, M.

V. Gusmeroli, P. Vavassori, M. Martinelli, “A coherence-multiplexed quasi-distributed polarimetric sensor suitable for structural monitoring,” in Proceedings of the Sixth International Conference on Optical Fiber SensorsH. J. Ardity, J. P. Dakin, R. Th. Kersten, eds. (Springer-Verlag, Berlin, 1989), pp. 513–518.

Meggitt, B. T.

S. Chen, A. J. Rogers, B. T. Meggitt, “Electronically scanned optical-fiber Young’s white-light interferometer,” Opt. Lett. 16, 761–763 (1991).
[CrossRef] [PubMed]

S. Chen, B. T. Meggitt, A. J. Rogers, “Novel electronic scanner for coherence multiplexing in a quasi-distributed pressure sensor,” Electron. Lett. 26, 1367–1368 (1990).
[CrossRef]

Newson, T. P.

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Interferometric fiber optic sensor using a short coherence length source,” Electron. Lett. 23, 1110–1111 (1987).
[CrossRef]

F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Coherence multiplexing of remote fiber optic Fabry–Perot sensing system,” Opt. Commun. 65, 319–321 (1987).
[CrossRef]

Okomoto, K.

Rashleigh, S. C.

Rogers, A. J.

S. Chen, A. J. Rogers, B. T. Meggitt, “Electronically scanned optical-fiber Young’s white-light interferometer,” Opt. Lett. 16, 761–763 (1991).
[CrossRef] [PubMed]

S. Chen, B. T. Meggitt, A. J. Rogers, “Novel electronic scanner for coherence multiplexing in a quasi-distributed pressure sensor,” Electron. Lett. 26, 1367–1368 (1990).
[CrossRef]

Shaw, H. J.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” IEEE J. Lightwave Technol. LT-3, 1062–1071 (1985).
[CrossRef]

Tur, M.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” IEEE J. Lightwave Technol. LT-3, 1062–1071 (1985).
[CrossRef]

Turpin, M.

M. Turpin, M. Brevignon, J. P. Le Pesant, O. Gaouditz, “Interfero-polarimetric fiber optic sensor for both pressure and temperature measurements,” in Proceedings of the Eighth International Conference on Optical Fiber Sensors (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 362–365.
[CrossRef]

Urbanczyk, W.

W. J. Bock, W. Urbanczyk, M. Zaremba, “Electronically scanned white-light interferometric strain sensor employing HB fiber,” Opt. Commun. 101, 157–162 (1993).
[CrossRef]

W. J. Bock, W. Urbanczyk, “Measurement of polarization-mode dispersion and modal birefringence in HB fibers by means of electronically scanned shearing-type interferometry,” submitted to Appl. Opt.

Vavassori, P.

V. Gusmeroli, P. Vavassori, M. Martinelli, “A coherence-multiplexed quasi-distributed polarimetric sensor suitable for structural monitoring,” in Proceedings of the Sixth International Conference on Optical Fiber SensorsH. J. Ardity, J. P. Dakin, R. Th. Kersten, eds. (Springer-Verlag, Berlin, 1989), pp. 513–518.

Wentworth, R. H.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” IEEE J. Lightwave Technol. LT-3, 1062–1071 (1985).
[CrossRef]

Youngquist, R. C.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” IEEE J. Lightwave Technol. LT-3, 1062–1071 (1985).
[CrossRef]

Zaremba, M.

W. J. Bock, W. Urbanczyk, M. Zaremba, “Electronically scanned white-light interferometric strain sensor employing HB fiber,” Opt. Commun. 101, 157–162 (1993).
[CrossRef]

Zimmermann, E.

R. Dandliker, E. Zimmermann, G. Frosio, “Noise-resistant signal processing for electronically scanned white light interferometry,” in Proceedings of the Eighth International Conference on Optical Fiber Sensors (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 53–56.
[CrossRef]

Electron. Lett. (2)

A. S. Gerges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Interferometric fiber optic sensor using a short coherence length source,” Electron. Lett. 23, 1110–1111 (1987).
[CrossRef]

S. Chen, B. T. Meggitt, A. J. Rogers, “Novel electronic scanner for coherence multiplexing in a quasi-distributed pressure sensor,” Electron. Lett. 26, 1367–1368 (1990).
[CrossRef]

IEEE J. Lightwave Technol. (1)

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” IEEE J. Lightwave Technol. LT-3, 1062–1071 (1985).
[CrossRef]

Opt. Commun. (2)

W. J. Bock, W. Urbanczyk, M. Zaremba, “Electronically scanned white-light interferometric strain sensor employing HB fiber,” Opt. Commun. 101, 157–162 (1993).
[CrossRef]

F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, “Coherence multiplexing of remote fiber optic Fabry–Perot sensing system,” Opt. Commun. 65, 319–321 (1987).
[CrossRef]

Opt. Lett. (3)

Other (5)

A. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in Proceedings of the First International Conference on Optical Fiber Sensors (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 132–139.

V. Gusmeroli, P. Vavassori, M. Martinelli, “A coherence-multiplexed quasi-distributed polarimetric sensor suitable for structural monitoring,” in Proceedings of the Sixth International Conference on Optical Fiber SensorsH. J. Ardity, J. P. Dakin, R. Th. Kersten, eds. (Springer-Verlag, Berlin, 1989), pp. 513–518.

M. Turpin, M. Brevignon, J. P. Le Pesant, O. Gaouditz, “Interfero-polarimetric fiber optic sensor for both pressure and temperature measurements,” in Proceedings of the Eighth International Conference on Optical Fiber Sensors (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 362–365.
[CrossRef]

W. J. Bock, W. Urbanczyk, “Measurement of polarization-mode dispersion and modal birefringence in HB fibers by means of electronically scanned shearing-type interferometry,” submitted to Appl. Opt.

R. Dandliker, E. Zimmermann, G. Frosio, “Noise-resistant signal processing for electronically scanned white light interferometry,” in Proceedings of the Eighth International Conference on Optical Fiber Sensors (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 53–56.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

General configuration of a white-light interferometric sensor employing HB fiber: P polarizer; A, analyzer; D, detection system.

Fig. 2
Fig. 2

Configuration of the electronically scanned white-light interferometric strain sensor: LD, laser diode; L1, length of fiber subjected to strain; L, collimating lens; WP, Wollaston prism; A, analyzer; CL, collimating lens.

Fig. 3
Fig. 3

Shifts of the contrast function δM c and the interference fringes δM f expressed in number of interference fringes for a white-light interferometric strain sensor using: (a) York HB and (b) Andrew E-type sensing fibers.

Tables (1)

Tables Icon

Table 1 Results of Measurements for York HB and Andrew E-Type Fibers

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

E ( ω ) = j , k , l E j k l ( ω ) for j , k , l = x , y ,
E j k l ( ω ) = ¼ E 0 ( ω ) exp { i [ L 1 β 1 j ( ω ) + L 2 β 1 k ( ω ) + L 31 β 3 ( ω ) ] } for j , k , l = x , y ,
I s ( ω ) = j , k , l , m , n , o E j k l ( ω ) m n o * ( ω ) for j , k , l , m , n , o = x , y ,
I s ( ω ) = E 0 ( ω ) 2 16 p , q , r exp i [ p Δ β 1 ( ω ) L 1 + q Δ β 1 ( ω ) L 2 + r β 3 ( ω ) Δ L 3 ] for p , q , r = - 1 , 0 , 0 , 1 ,
Δ β 1 ( ω ) = β 1 x ( ω ) - β 1 y ( ω ) ,
Δ L 3 = L 3 x - L 3 y .
Δ β 1 ( ω ) = Δ β 1 ( ω 0 ) + d Δ β 1 d ω ( ω - ω 0 ) ,
β 3 ( ω ) = β 3 ( ω 0 ) + d β 3 d ω ( ω - ω 0 ) .
τ 1 = d Δ β 1 d ω = 1 c [ Δ n 1 ( λ 0 ) - λ 0 d Δ n 1 d λ ] = Δ N 1 c ,
d β 3 d ω = 1 c [ n 3 ( λ 0 ) - λ 0 d n 3 d λ ] = 1 c N 3 ,
I = I 0 16 p , q , r γ [ Δ ω c ( p Δ N 1 L 1 + q Δ N 1 L 2 + r N 3 Δ L 3 ) ] × exp i [ Δ ω c ( p Δ n 1 L 1 + q Δ n 1 L 2 + r n 3 Δ L 3 ) ] for p , q , r = - 1 , 0 , 0 , 1 ,
I = 1 4 I 0 { 2 + γ [ Δ ω c ( N 3 Δ L 3 - Δ N 1 L 1 ) ] × cos [ ω 0 c ( n 3 Δ L 3 - Δ n 1 L 1 ) ] }
δ M c = δ ( Δ L 3 ) c n 3 λ 0 = n 3 L 1 N 3 λ 0 ( Δ N 1 X + 1 L 1 L 1 X Δ N 1 ) δ X ,
δ M f = δ ( Δ L 3 ) f n 3 λ 0 = L 1 λ 0 ( Δ n 1 X + 1 L 1 L 1 X Δ n 1 ) δ X ,
δ M f - δ M c = ½ .
L 1 δ X max = K ,
K = λ 0 2 | ( Δ n 1 X - n 3 N 3 Δ N 1 X ) + 1 L 1 L 1 X ( Δ n 1 - n 3 N 3 Δ N 1 ) | .
X [ Δ n 1 λ ] = ( δ M f - N 3 n 3 δ M c ) δ X L 1 - 1 L 1 L 1 Δ n 1 X λ .
1 δ M c L 1 δ ɛ = Δ n 3 c Δ N 3 λ 0 [ τ 1 ɛ + τ 1 ] ,
1 δ M f L 1 δ ɛ = 1 λ 0 [ Δ n 1 ɛ + Δ n i ] ,
τ 1 ɛ = ( δ M c δ ɛ ) λ 0 Δ N 3 c L 1 Δ n 3 - τ 1 ,
Δ n 1 ɛ = ( δ M f δ ɛ ) λ 0 L 1 - Δ n 1 ,
ɛ [ Δ n 1 λ ] = 1 L 1 [ ( δ M f δ ɛ ) - Δ N 3 Δ n 3 ( δ M c δ ɛ ) ] - Δ N 1 - Δ n 1 λ 0 ,

Metrics