Abstract

A multiple wavelength, pulsed CO2 lidar system is used to measure spectral backscattering and extinction of kaolin dust of different optical thicknesses. The measurements show that the wavelength dependence of spectral backscattering changes with increased multiple scattering, whereas the spectral extinction remains relatively unchanged. A simple analytical two-stream radiative transfer model is used to confirm the measurements qualitatively. Several equations were derived from the model to show that in general the wavelength dependence of backscatter is less dependent on wavelength for a multiple-scattering case. Therefore, the aerosol cloud becomes a diffuse target that is more flat in its spectral reflectance as multiple scattering increases. An application to differential absorption detection is discussed and shows that, in general, the effect of multiple scattering on the backscattered signal from aerosols will tend to reduce the error in deducing the average path-length concentration of the absorbing trace gas.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ben-David, S. L. Emery, S. W. Gotoff, F. D’Amico, “A high PRF, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992).
    [CrossRef] [PubMed]
  2. R. M. Schotland, “Some observation of the vertical profile of water vapor by laser optical radar,” in Proceedings of the Fourth Symposium on Remote Sensing of Environment, J. O. Morgan, D. C. Parker, eds. (U. Michigan Press, Ann Arbor, Mich., 1966), p. 273.
  3. O. Steinvall, G. Bolander, T. Clasesson, “Measuring atmospheric scattering and extinction at 10 μm using a CO2 lidar,” Appl. Opt. 22, 1688–1695 (1983).
    [CrossRef] [PubMed]
  4. H. T. Mudd, C. H. Kruger, E. R. Murray, “Measurement of IR laser backscatter spectra from sulfuric acid and ammonium sulfate aerosols,” Appl. Opt. 21, 1146–1154 (1982).
    [CrossRef] [PubMed]
  5. R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, “Aerosol backscatter coefficient profiles measured at 10.6 μm,” J. Appl. Meteorol. 20, 184–194 (1981).
    [CrossRef]
  6. E. E. Uthe, “Lidar evaluation of smoke and dust clouds,” Appl. Opt. 20, 1503–1510 (1981).
    [CrossRef] [PubMed]
  7. E. E. Uthe, J. M. Livingston, “Lidar extinction methods applied to observation of obscurant events,” Appl. Opt. 25, 677–684 (1986).
    [CrossRef]
  8. M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol backscattering profiles at λ = 10.6 μm,” Appl. Opt. 21, 2442–2446 (1982).
    [CrossRef] [PubMed]
  9. E. R. Murray, M. F. Williams, J. E. vander Laan, “Single-ended measurement of infrared extinction using lidar,” Appl. Opt. 17, 296–299 (1978).
    [CrossRef] [PubMed]
  10. R. G. Pinnick, G. Fernandez, B. D. Hinds, C. W. Bruce, R. W. Schaefer, J. D. Pendleton, “Dust generated by vehicular traffic on unpaved roadways: sizes and infrared extinction characteristics,” Aerosol Sci. Technol. 4, 99–121 (1985).
    [CrossRef]
  11. J. H. Hodges, “Aerosol extinction contribution to atmospheric attenuation in infrared wavelengths,” Appl. Opt. 11, 2304–2310 (1972).
    [CrossRef] [PubMed]
  12. W. D. Powell, D. Cooper, J. E. vander Laan, E. R. Murray, “Carbon dioxide laser backscatter signatures from laboratory-generated dust,” Appl. Opt. 25, 2506–2513 (1986).
    [CrossRef]
  13. H. C. van de Hulst, Multiple Light Scattering Tables, Formulas and Application (Academic, New York, 1980).
  14. L. R. Bissonnette, “Multiscattering model for propagation of narrow light beams in aerosol media,” Appl. Opt. 27, 2478–2484 (1988).
    [CrossRef] [PubMed]
  15. B. M. Herman, S. R. Browning, “A numerical solution to the equation of radiative transfer,” J. Atmos. Sci. 32, 559–566 (1965).
    [CrossRef]
  16. S. C. Hill, A. C. Hill, P. W. Barber, “Light scattering by size/shape distributions of soil particles and spheroids,” Appl. Opt. 23, 1025–1031 (1984).
    [CrossRef] [PubMed]
  17. S. Asano, G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Opt. 14, 29–49 (1975).
    [PubMed]
  18. R. D. Haracz, L. D. Cohen, A. Cohen, “Scattering of linearly polarized light from randomly oriented cylinders and spheroids,” J. Appl. Phys. 58, 3322 (1985).
    [CrossRef]
  19. R. G. Pinnick, G. Fernandez, B. D. Hinds, “Explosion dust particle size measurements,” Appl. Opt. 22, 95–102 (1983).
    [CrossRef] [PubMed]
  20. J. Heintzenberg, R. M. Welch, “Retrieval of aerosol size distribution from angular scattering functions: effect of particle composition and shape,” Appl. Opt. 21, 822–830 (1982).
    [CrossRef] [PubMed]
  21. J. B. Polack, J. N. Cuzzi, “Scattering by nonspherical particles of size comparable to a wavelength: a new semiempirical theory and its application to tropospheric aerosols,” J. Atmos. Sci. 37, 868 (1979).
    [CrossRef]
  22. S. R. Pal, A. I. Carswell, “Multiple scattering in atmospheric clouds: lidar observations,” Appl. Opt. 15, 1990–1995 (1976).
    [CrossRef] [PubMed]
  23. K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (Deepak, Hampton, Va., 1988).
  24. W. B. Grant, “Water vapor absorption coefficients in the 8–13 μm spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990).
    [CrossRef] [PubMed]
  25. G. L. Lopel, M. A. O’Nell, J. A. Gelbwachs, “Water-vapor continuum CO2 laser absorption spectra between 27 °C and −10°C,” Appl. Opt. 22, 3701–3710 (1983).
    [CrossRef]
  26. M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, “Laser absorption spectrometer: remote measurement of tropospheric ozone,” Appl. Opt. 20, 545–552 (1981).
    [CrossRef] [PubMed]
  27. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” Rep. AFGL-TR-86-0110 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).
  28. P. V. Cvijin, D. Ignjatijevic, I. Mendas, M. Sreckovic, L. Pantani, I. Pippi, “Reflectance spectra of terrestrial surface material at CO2 laser wavelengths: effect on DIAL and geological remote sensing,” Appl. Opt. 26, 4323–4329 (1987).
    [CrossRef] [PubMed]
  29. W. B. Grant, “Effect of differential spectral reflectance DIAL measurements using topographic targets,” Appl. Opt. 21, 2390–2394 (1982).
    [CrossRef] [PubMed]

1992 (1)

1990 (1)

1988 (1)

1987 (1)

1986 (2)

W. D. Powell, D. Cooper, J. E. vander Laan, E. R. Murray, “Carbon dioxide laser backscatter signatures from laboratory-generated dust,” Appl. Opt. 25, 2506–2513 (1986).
[CrossRef]

E. E. Uthe, J. M. Livingston, “Lidar extinction methods applied to observation of obscurant events,” Appl. Opt. 25, 677–684 (1986).
[CrossRef]

1985 (2)

R. G. Pinnick, G. Fernandez, B. D. Hinds, C. W. Bruce, R. W. Schaefer, J. D. Pendleton, “Dust generated by vehicular traffic on unpaved roadways: sizes and infrared extinction characteristics,” Aerosol Sci. Technol. 4, 99–121 (1985).
[CrossRef]

R. D. Haracz, L. D. Cohen, A. Cohen, “Scattering of linearly polarized light from randomly oriented cylinders and spheroids,” J. Appl. Phys. 58, 3322 (1985).
[CrossRef]

1984 (1)

1983 (3)

1982 (4)

1981 (3)

1979 (1)

J. B. Polack, J. N. Cuzzi, “Scattering by nonspherical particles of size comparable to a wavelength: a new semiempirical theory and its application to tropospheric aerosols,” J. Atmos. Sci. 37, 868 (1979).
[CrossRef]

1978 (1)

1976 (1)

1975 (1)

1972 (1)

1965 (1)

B. M. Herman, S. R. Browning, “A numerical solution to the equation of radiative transfer,” J. Atmos. Sci. 32, 559–566 (1965).
[CrossRef]

Anderson, G. P.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” Rep. AFGL-TR-86-0110 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Asano, S.

Barber, P. W.

Barrett, E. W.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, “Aerosol backscatter coefficient profiles measured at 10.6 μm,” J. Appl. Meteorol. 20, 184–194 (1981).
[CrossRef]

Ben-David, A.

Bissonnette, L. R.

Bolander, G.

Browning, S. R.

B. M. Herman, S. R. Browning, “A numerical solution to the equation of radiative transfer,” J. Atmos. Sci. 32, 559–566 (1965).
[CrossRef]

Bruce, C. W.

R. G. Pinnick, G. Fernandez, B. D. Hinds, C. W. Bruce, R. W. Schaefer, J. D. Pendleton, “Dust generated by vehicular traffic on unpaved roadways: sizes and infrared extinction characteristics,” Aerosol Sci. Technol. 4, 99–121 (1985).
[CrossRef]

Carswell, A. I.

Chetwynd, J. H.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” Rep. AFGL-TR-86-0110 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Clasesson, T.

Clough, S. A.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” Rep. AFGL-TR-86-0110 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Cohen, A.

R. D. Haracz, L. D. Cohen, A. Cohen, “Scattering of linearly polarized light from randomly oriented cylinders and spheroids,” J. Appl. Phys. 58, 3322 (1985).
[CrossRef]

Cohen, L. D.

R. D. Haracz, L. D. Cohen, A. Cohen, “Scattering of linearly polarized light from randomly oriented cylinders and spheroids,” J. Appl. Phys. 58, 3322 (1985).
[CrossRef]

Cooper, D.

Coulson, K. L.

K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (Deepak, Hampton, Va., 1988).

Cupp, R. E.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, “Aerosol backscatter coefficient profiles measured at 10.6 μm,” J. Appl. Meteorol. 20, 184–194 (1981).
[CrossRef]

Cuzzi, J. N.

J. B. Polack, J. N. Cuzzi, “Scattering by nonspherical particles of size comparable to a wavelength: a new semiempirical theory and its application to tropospheric aerosols,” J. Atmos. Sci. 37, 868 (1979).
[CrossRef]

Cvijin, P. V.

D’Amico, F.

Derr, V. E.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, “Aerosol backscatter coefficient profiles measured at 10.6 μm,” J. Appl. Meteorol. 20, 184–194 (1981).
[CrossRef]

Emery, S. L.

Fernandez, G.

R. G. Pinnick, G. Fernandez, B. D. Hinds, C. W. Bruce, R. W. Schaefer, J. D. Pendleton, “Dust generated by vehicular traffic on unpaved roadways: sizes and infrared extinction characteristics,” Aerosol Sci. Technol. 4, 99–121 (1985).
[CrossRef]

R. G. Pinnick, G. Fernandez, B. D. Hinds, “Explosion dust particle size measurements,” Appl. Opt. 22, 95–102 (1983).
[CrossRef] [PubMed]

Gelbwachs, J. A.

Gotoff, S. W.

Grant, W. B.

Hall, F. F.

Haracz, R. D.

R. D. Haracz, L. D. Cohen, A. Cohen, “Scattering of linearly polarized light from randomly oriented cylinders and spheroids,” J. Appl. Phys. 58, 3322 (1985).
[CrossRef]

Heintzenberg, J.

Herman, B. M.

B. M. Herman, S. R. Browning, “A numerical solution to the equation of radiative transfer,” J. Atmos. Sci. 32, 559–566 (1965).
[CrossRef]

Hill, A. C.

Hill, S. C.

Hinds, B. D.

R. G. Pinnick, G. Fernandez, B. D. Hinds, C. W. Bruce, R. W. Schaefer, J. D. Pendleton, “Dust generated by vehicular traffic on unpaved roadways: sizes and infrared extinction characteristics,” Aerosol Sci. Technol. 4, 99–121 (1985).
[CrossRef]

R. G. Pinnick, G. Fernandez, B. D. Hinds, “Explosion dust particle size measurements,” Appl. Opt. 22, 95–102 (1983).
[CrossRef] [PubMed]

Hodges, J. H.

Ignjatijevic, D.

Kneizys, F. X.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” Rep. AFGL-TR-86-0110 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Kruger, C. H.

Lawrence, T. R.

Livingston, J. M.

E. E. Uthe, J. M. Livingston, “Lidar extinction methods applied to observation of obscurant events,” Appl. Opt. 25, 677–684 (1986).
[CrossRef]

Lopel, G. L.

McDougal, D. S.

Mendas, I.

Menzies, R. T.

Mudd, H. T.

Murray, E. R.

O’Nell, M. A.

Pal, S. R.

Pantani, L.

Pendleton, J. D.

R. G. Pinnick, G. Fernandez, B. D. Hinds, C. W. Bruce, R. W. Schaefer, J. D. Pendleton, “Dust generated by vehicular traffic on unpaved roadways: sizes and infrared extinction characteristics,” Aerosol Sci. Technol. 4, 99–121 (1985).
[CrossRef]

Pinnick, R. G.

R. G. Pinnick, G. Fernandez, B. D. Hinds, C. W. Bruce, R. W. Schaefer, J. D. Pendleton, “Dust generated by vehicular traffic on unpaved roadways: sizes and infrared extinction characteristics,” Aerosol Sci. Technol. 4, 99–121 (1985).
[CrossRef]

R. G. Pinnick, G. Fernandez, B. D. Hinds, “Explosion dust particle size measurements,” Appl. Opt. 22, 95–102 (1983).
[CrossRef] [PubMed]

Pippi, I.

Polack, J. B.

J. B. Polack, J. N. Cuzzi, “Scattering by nonspherical particles of size comparable to a wavelength: a new semiempirical theory and its application to tropospheric aerosols,” J. Atmos. Sci. 37, 868 (1979).
[CrossRef]

Post, M. J.

Powell, W. D.

Pueschel, R. F.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, “Aerosol backscatter coefficient profiles measured at 10.6 μm,” J. Appl. Meteorol. 20, 184–194 (1981).
[CrossRef]

Richter, R. A.

Schaefer, R. W.

R. G. Pinnick, G. Fernandez, B. D. Hinds, C. W. Bruce, R. W. Schaefer, J. D. Pendleton, “Dust generated by vehicular traffic on unpaved roadways: sizes and infrared extinction characteristics,” Aerosol Sci. Technol. 4, 99–121 (1985).
[CrossRef]

Schotland, R. M.

R. M. Schotland, “Some observation of the vertical profile of water vapor by laser optical radar,” in Proceedings of the Fourth Symposium on Remote Sensing of Environment, J. O. Morgan, D. C. Parker, eds. (U. Michigan Press, Ann Arbor, Mich., 1966), p. 273.

Schwiesow, R. L.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, “Aerosol backscatter coefficient profiles measured at 10.6 μm,” J. Appl. Meteorol. 20, 184–194 (1981).
[CrossRef]

Shettle, E. P.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” Rep. AFGL-TR-86-0110 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Shumate, M. S.

Sreckovic, M.

Steinvall, O.

Uthe, E. E.

E. E. Uthe, J. M. Livingston, “Lidar extinction methods applied to observation of obscurant events,” Appl. Opt. 25, 677–684 (1986).
[CrossRef]

E. E. Uthe, “Lidar evaluation of smoke and dust clouds,” Appl. Opt. 20, 1503–1510 (1981).
[CrossRef] [PubMed]

van de Hulst, H. C.

H. C. van de Hulst, Multiple Light Scattering Tables, Formulas and Application (Academic, New York, 1980).

vander Laan, J. E.

Welch, R. M.

Williams, M. F.

Yamamoto, G.

Aerosol Sci. Technol. (1)

R. G. Pinnick, G. Fernandez, B. D. Hinds, C. W. Bruce, R. W. Schaefer, J. D. Pendleton, “Dust generated by vehicular traffic on unpaved roadways: sizes and infrared extinction characteristics,” Aerosol Sci. Technol. 4, 99–121 (1985).
[CrossRef]

Appl. Opt. (20)

J. H. Hodges, “Aerosol extinction contribution to atmospheric attenuation in infrared wavelengths,” Appl. Opt. 11, 2304–2310 (1972).
[CrossRef] [PubMed]

W. D. Powell, D. Cooper, J. E. vander Laan, E. R. Murray, “Carbon dioxide laser backscatter signatures from laboratory-generated dust,” Appl. Opt. 25, 2506–2513 (1986).
[CrossRef]

L. R. Bissonnette, “Multiscattering model for propagation of narrow light beams in aerosol media,” Appl. Opt. 27, 2478–2484 (1988).
[CrossRef] [PubMed]

S. C. Hill, A. C. Hill, P. W. Barber, “Light scattering by size/shape distributions of soil particles and spheroids,” Appl. Opt. 23, 1025–1031 (1984).
[CrossRef] [PubMed]

S. Asano, G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Opt. 14, 29–49 (1975).
[PubMed]

A. Ben-David, S. L. Emery, S. W. Gotoff, F. D’Amico, “A high PRF, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992).
[CrossRef] [PubMed]

O. Steinvall, G. Bolander, T. Clasesson, “Measuring atmospheric scattering and extinction at 10 μm using a CO2 lidar,” Appl. Opt. 22, 1688–1695 (1983).
[CrossRef] [PubMed]

H. T. Mudd, C. H. Kruger, E. R. Murray, “Measurement of IR laser backscatter spectra from sulfuric acid and ammonium sulfate aerosols,” Appl. Opt. 21, 1146–1154 (1982).
[CrossRef] [PubMed]

E. E. Uthe, “Lidar evaluation of smoke and dust clouds,” Appl. Opt. 20, 1503–1510 (1981).
[CrossRef] [PubMed]

E. E. Uthe, J. M. Livingston, “Lidar extinction methods applied to observation of obscurant events,” Appl. Opt. 25, 677–684 (1986).
[CrossRef]

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol backscattering profiles at λ = 10.6 μm,” Appl. Opt. 21, 2442–2446 (1982).
[CrossRef] [PubMed]

E. R. Murray, M. F. Williams, J. E. vander Laan, “Single-ended measurement of infrared extinction using lidar,” Appl. Opt. 17, 296–299 (1978).
[CrossRef] [PubMed]

R. G. Pinnick, G. Fernandez, B. D. Hinds, “Explosion dust particle size measurements,” Appl. Opt. 22, 95–102 (1983).
[CrossRef] [PubMed]

J. Heintzenberg, R. M. Welch, “Retrieval of aerosol size distribution from angular scattering functions: effect of particle composition and shape,” Appl. Opt. 21, 822–830 (1982).
[CrossRef] [PubMed]

S. R. Pal, A. I. Carswell, “Multiple scattering in atmospheric clouds: lidar observations,” Appl. Opt. 15, 1990–1995 (1976).
[CrossRef] [PubMed]

W. B. Grant, “Water vapor absorption coefficients in the 8–13 μm spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990).
[CrossRef] [PubMed]

G. L. Lopel, M. A. O’Nell, J. A. Gelbwachs, “Water-vapor continuum CO2 laser absorption spectra between 27 °C and −10°C,” Appl. Opt. 22, 3701–3710 (1983).
[CrossRef]

M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, “Laser absorption spectrometer: remote measurement of tropospheric ozone,” Appl. Opt. 20, 545–552 (1981).
[CrossRef] [PubMed]

P. V. Cvijin, D. Ignjatijevic, I. Mendas, M. Sreckovic, L. Pantani, I. Pippi, “Reflectance spectra of terrestrial surface material at CO2 laser wavelengths: effect on DIAL and geological remote sensing,” Appl. Opt. 26, 4323–4329 (1987).
[CrossRef] [PubMed]

W. B. Grant, “Effect of differential spectral reflectance DIAL measurements using topographic targets,” Appl. Opt. 21, 2390–2394 (1982).
[CrossRef] [PubMed]

J. Appl. Meteorol. (1)

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, “Aerosol backscatter coefficient profiles measured at 10.6 μm,” J. Appl. Meteorol. 20, 184–194 (1981).
[CrossRef]

J. Appl. Phys. (1)

R. D. Haracz, L. D. Cohen, A. Cohen, “Scattering of linearly polarized light from randomly oriented cylinders and spheroids,” J. Appl. Phys. 58, 3322 (1985).
[CrossRef]

J. Atmos. Sci. (2)

B. M. Herman, S. R. Browning, “A numerical solution to the equation of radiative transfer,” J. Atmos. Sci. 32, 559–566 (1965).
[CrossRef]

J. B. Polack, J. N. Cuzzi, “Scattering by nonspherical particles of size comparable to a wavelength: a new semiempirical theory and its application to tropospheric aerosols,” J. Atmos. Sci. 37, 868 (1979).
[CrossRef]

Other (4)

K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (Deepak, Hampton, Va., 1988).

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” Rep. AFGL-TR-86-0110 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

H. C. van de Hulst, Multiple Light Scattering Tables, Formulas and Application (Academic, New York, 1980).

R. M. Schotland, “Some observation of the vertical profile of water vapor by laser optical radar,” in Proceedings of the Fourth Symposium on Remote Sensing of Environment, J. O. Morgan, D. C. Parker, eds. (U. Michigan Press, Ann Arbor, Mich., 1966), p. 273.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Pulse shape for the laser pulse (solid curve), and the backscattering from an optically thin kaolin-dust cloud (▲) and an optically thick kaolin-dust cloud (■). The location of the cloud and target are shown. The return signal from the target is a result of a two-way extinction through the cloud.

Fig. 2
Fig. 2

Optical parameters computed by using the Mie theory for the measured kaolin-dust aerosol size distribution: single-scattering albedo a (■), asymmetry factor g (+), extinction optical depth τ (*), scattering optical depth τs (▲), and volume backscattering coefficient β(×).

Fig. 3
Fig. 3

Reflected fraction of flux for a layer with spectral optical depth τ(λ) taken from Fig. 2 and normalized to the following values: 0.1 (■), 1 (+), 2 (*), 5 (□), 10 (×), and 20 (▲).

Fig. 4
Fig. 4

Effective optical depth τ*(λ) for a layer with spectral optical depth τ(λ) taken from Fig. 2 and normalized to the following values: 0.1 (■), 1 (+), 2 (*), 5 (□), 10 (×), and 20 (▲).

Fig. 5
Fig. 5

Normalized atmospheric transmission measured with a hard target at a distance of 1280 m.

Fig. 6
Fig. 6

Measurements of backscattering from an optically thin kaolin-dust cloud with a maximum spectral effective optical depth τ* of the following values: 0.24 (×), 0.43 (+), 0.44 (*), and 1.0 (■). The theoretical curve (▲) is computed from the radiative transfer model.

Fig. 7
Fig. 7

Measurements of backscattering from an optically thick kaolin-dust cloud with a maximum spectral effective optical depth τ*(λ) of the following values: 1.3 (×), 1.8 (+), 2 (*), and 2.3 (■). The theoretical curve (▲) is computed from the radiative transfer model.

Fig. 8
Fig. 8

Measurements of backscattering for a transition stage between an optically thin and thick kaolin-dust cloud with a maximum spectral effective optical depth τ*(λ) of the following values: 1.13 (■) and 1.27 (×). The theoretical curve (▲) is computed from the radiative transfer model.

Fig. 9
Fig. 9

Measurements of spectral effective optical depth τ*(λ) from a kaolin-dust cloud with a maximum spectral effective optical depth τ*(λ) of the following values: 0.44 (+), 0.86 (×), 1.13 (*), 1.27 (■), and 2.07 ( × ¯ ¯ ). The theoretical curve (▲) is computed from the radiative transfer model.

Fig. 10
Fig. 10

Error Δα(τ)/Δα(τ = 0.01) for DIAL detection of water vapor and ozone from the kaolin-dust backscattering signal; water-vapor detection with the wavelength pair 9R12 and 9R14 (■) and the wavelength pair 10R20 and 10R18 (▲); and ozone detection with the wavelength pair 9P14 and 9P22 (*).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

U R ( τ = , a , g ) = 2 a ( 1 + g ) 2 [ ( 1 a ) ( 1 a g ) ] 1 / 2 a ( 1 g )
U R ( τ < , a , g ) = ( 1 g ) a τ 2 [ a ( 1 + g ) 2 ] τ ,
U T ( τ , a , g ) = 2 2 ( 1 + τ ) a τ ( 1 + g ) .
α = ln [ U R 1 ( τ , a , g ) ] ln [ U R 2 ( τ , a , g ) ] 2 ( σ 2 σ 1 ) L ,
Δ α = [ ln ( U R ) / τ ] d τ + [ ln ( U R ) / a ] d a + [ ln ( U R ) / g ] d g 2 d σ L .
ln [ U R ( τ < ) ] τ = 2 2 τ ( a g + a 2 ) τ 2 ,
ln [ U R ( τ < ) ] a = 2 ( τ + 1 ) 2 a + [ 2 a a 2 a 2 g ] τ ,
ln [ U R ( τ < ) ] g = 2 + 2 ( 1 a ) τ 2 ( 1 + τ ) ( 1 g ) ( 1 g 2 ) a τ .
ln [ U R ( τ = ) ] a = 1 a [ ( 1 a ) ( 1 a g ) ] 1 / 2 ,
ln [ U R ( τ = ) ] g = ( 1 a ) 1 / 2 ( 1 g ) [ ( 1 a g ) ] 1 / 2 .
Δ α | τ 0 = { ln [ U R ( τ < ) ] / τ } | τ 0 + ( d a / a ) d g / ( 1 g ) 2 d σ L ,
Δ α | τ = = d a / { a [ ( 1 a ) ( 1 a g ) ] 1 / 2 } d g ( 1 a ) 1 / 2 / [ ( 1 a ) ( 1 a g ) ] 1 / 2 2 d σ L ,
Δ ln [ U T ( τ < ) ] = a τ 2 ( 1 + τ ) a τ ( 1 + g ) d g 2 a ( 1 + g ) 2 ( 1 + τ ) a τ ( 1 + g ) d τ + ( 1 + g ) τ 2 ( 1 + τ ) a τ ( 1 + g ) d a .

Metrics