Abstract

The experimental results of laboratory simulations of lidar returns from clouds are presented. Measurements were carried out on laboratory-scaled cloud models by using a picosecond laser and a streak-camera system. The turbid structures simulating clouds were suspensions of polystyrene spheres in water. The geometrical situation was similar to that of an actual lidar sounding a cloud 1000 m distant and with a thickness of 300 m. Measurements were repeated for different concentrations and different sizes of spheres. The results show how the effect of multiple scattering depends on the scattering coefficient and on the phase function of the diffusers. The depolarization introduced by multiple scattering was also investigated. The results were also compared with numerical results obtained by Monte Carlo simulations. Substantially good agreement between numerical and experimental results was found. The measurements showed the adequacy of modern electro-optical systems to study the features of multiple-scattering effects on lidar echoes from atmosphere or ocean by means of experiments on well-controlled laboratory-scaled models. This adequacy provides the possibility of studying the influence of different effects in the laboratory in well-controlled situations.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. MUSCLE3: Third International Workshop on Multiple Scattering Lidar Experiments, Oberpfaffenhofen, Germany, 24–26 October 1989.
  2. MUSCLE4: Fourth International Workshop on Multiple Scattering Lidar Experiments, Florence, Italy, 29–31 October 1990.
  3. J. A. Weinman, “Effects of multiple scattering on light pulses reflected by turbid atmosphere,” J. Atmos. Sci. 33, 1763–1771 (1976).
    [Crossref]
  4. E. P. Zege, I. L. Katsev, I. N. Polonsky, “Analytical solution of the lidar equation for cloud sounding taking into account multiple scattering,” presented at the Fifteenth International Laser Radar Conference, Tomsk, Russia, 23–27 July 1990.
  5. L. R. Bissonnette, “Multiscattering model for propagation of narrow light beams in aerosol media,” Appl. Opt. 27, 2478–2484 (1988).
    [Crossref] [PubMed]
  6. G. N. Plass, G. W. Kattawar, “Monte Carlo calculations of light scattering from clouds,” Appl. Opt. 7, 415–419 (1968).
    [Crossref] [PubMed]
  7. P. Bruscaglioni, G. Zaccanti, L. Pantani, L. Stefanutti, “An approximate procedure to isolate single scattering contribution to lidar returns from fogs,” Int. J. Remote Sensing 4, 399–417 (1983).
    [Crossref]
  8. C. M. R. Piatt, “Remote sounding of high clouds. III: Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
    [Crossref]
  9. L. R. Poole, D. D. Venable, J. W. Campbell, “Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems,” Appl. Opt. 20, 3653–3656 (1981).
    [Crossref] [PubMed]
  10. K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976).
    [Crossref]
  11. E. P. Zege, A. P. Ivanov, I. L. Katsev, Image Transfer through a Scattering Medium (Springer-Verlag, New York, 1991).
    [Crossref]
  12. P. Bruscaglioni, G. Zaccanti, M. Olivieri, “Laboratory simulation of the scattering of a laser beam in a turbid atmosphere,” J. Phys. D 21, S45–48 (1988).
    [Crossref]
  13. A. Ishimaru, Y. Kuga, “Attenuation constant of a coherent field in a dense distribution of particles,” J. Opt. Soc. Am. 72, 1317–1320 (1982).
    [Crossref]
  14. P. Bruscaglioni, A. Ismaelli, P. Donelli, G. Zaccanti, “Monte Carlo calculations of lidar returns from clouds. Depolarization due to multiple scattering,” in MUSCLE4: Proceedings of the Fourth International Workshop on Multiple Scattering Lidar Experiments, P. Bruscaglioni, ed. (Department of Physics, University of Florence, Florence, Italy, 1990), pp. 92–99.
  15. P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Simple scaling relationships for calculation of lidar returns from turbid media in multiple scattering regime,” J. Mod. Opt. 39, 1003–1015 (1992).
    [Crossref]
  16. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  17. G. Zaccanti, P. Bruscaglioni, “Deviation from the Lambert–Beer law in the transmittance of a light beam through diffusing media: experimental results,” J. Mod. Opt. 35, 229–242 (1988).
    [Crossref]
  18. G. Zaccanti, P. Bruscaglioni, M. Dami, “Simple inexpensive method of measuring the temporal spreading of a light pulse propagating in a turbid medium,” Appl. Opt. 29, 3938–3944 (1990).
    [Crossref] [PubMed]
  19. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [Crossref] [PubMed]
  20. C. Flesia, A. Mugnai, L. Stefanutti, “Depolarization effect by nonspherical particles on the lidar signal,” presented at the International Commission for Optics Topical Meeting on Atmospheric, Volume, and Surface Scattering and Propagation, Florence, Italy, 27–30 August 1991.

1992 (1)

P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Simple scaling relationships for calculation of lidar returns from turbid media in multiple scattering regime,” J. Mod. Opt. 39, 1003–1015 (1992).
[Crossref]

1990 (1)

1988 (3)

G. Zaccanti, P. Bruscaglioni, “Deviation from the Lambert–Beer law in the transmittance of a light beam through diffusing media: experimental results,” J. Mod. Opt. 35, 229–242 (1988).
[Crossref]

L. R. Bissonnette, “Multiscattering model for propagation of narrow light beams in aerosol media,” Appl. Opt. 27, 2478–2484 (1988).
[Crossref] [PubMed]

P. Bruscaglioni, G. Zaccanti, M. Olivieri, “Laboratory simulation of the scattering of a laser beam in a turbid atmosphere,” J. Phys. D 21, S45–48 (1988).
[Crossref]

1983 (1)

P. Bruscaglioni, G. Zaccanti, L. Pantani, L. Stefanutti, “An approximate procedure to isolate single scattering contribution to lidar returns from fogs,” Int. J. Remote Sensing 4, 399–417 (1983).
[Crossref]

1982 (1)

1981 (2)

C. M. R. Piatt, “Remote sounding of high clouds. III: Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
[Crossref]

L. R. Poole, D. D. Venable, J. W. Campbell, “Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems,” Appl. Opt. 20, 3653–3656 (1981).
[Crossref] [PubMed]

1976 (2)

K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976).
[Crossref]

J. A. Weinman, “Effects of multiple scattering on light pulses reflected by turbid atmosphere,” J. Atmos. Sci. 33, 1763–1771 (1976).
[Crossref]

1973 (1)

1968 (1)

Bissonnette, L. R.

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bruscaglioni, P.

P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Simple scaling relationships for calculation of lidar returns from turbid media in multiple scattering regime,” J. Mod. Opt. 39, 1003–1015 (1992).
[Crossref]

G. Zaccanti, P. Bruscaglioni, M. Dami, “Simple inexpensive method of measuring the temporal spreading of a light pulse propagating in a turbid medium,” Appl. Opt. 29, 3938–3944 (1990).
[Crossref] [PubMed]

G. Zaccanti, P. Bruscaglioni, “Deviation from the Lambert–Beer law in the transmittance of a light beam through diffusing media: experimental results,” J. Mod. Opt. 35, 229–242 (1988).
[Crossref]

P. Bruscaglioni, G. Zaccanti, M. Olivieri, “Laboratory simulation of the scattering of a laser beam in a turbid atmosphere,” J. Phys. D 21, S45–48 (1988).
[Crossref]

P. Bruscaglioni, G. Zaccanti, L. Pantani, L. Stefanutti, “An approximate procedure to isolate single scattering contribution to lidar returns from fogs,” Int. J. Remote Sensing 4, 399–417 (1983).
[Crossref]

P. Bruscaglioni, A. Ismaelli, P. Donelli, G. Zaccanti, “Monte Carlo calculations of lidar returns from clouds. Depolarization due to multiple scattering,” in MUSCLE4: Proceedings of the Fourth International Workshop on Multiple Scattering Lidar Experiments, P. Bruscaglioni, ed. (Department of Physics, University of Florence, Florence, Italy, 1990), pp. 92–99.

Campbell, J. W.

Dami, M.

Donelli, P.

P. Bruscaglioni, A. Ismaelli, P. Donelli, G. Zaccanti, “Monte Carlo calculations of lidar returns from clouds. Depolarization due to multiple scattering,” in MUSCLE4: Proceedings of the Fourth International Workshop on Multiple Scattering Lidar Experiments, P. Bruscaglioni, ed. (Department of Physics, University of Florence, Florence, Italy, 1990), pp. 92–99.

Flesia, C.

C. Flesia, A. Mugnai, L. Stefanutti, “Depolarization effect by nonspherical particles on the lidar signal,” presented at the International Commission for Optics Topical Meeting on Atmospheric, Volume, and Surface Scattering and Propagation, Florence, Italy, 27–30 August 1991.

Hale, G. M.

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Ishimaru, A.

Ismaelli, A.

P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Simple scaling relationships for calculation of lidar returns from turbid media in multiple scattering regime,” J. Mod. Opt. 39, 1003–1015 (1992).
[Crossref]

P. Bruscaglioni, A. Ismaelli, P. Donelli, G. Zaccanti, “Monte Carlo calculations of lidar returns from clouds. Depolarization due to multiple scattering,” in MUSCLE4: Proceedings of the Fourth International Workshop on Multiple Scattering Lidar Experiments, P. Bruscaglioni, ed. (Department of Physics, University of Florence, Florence, Italy, 1990), pp. 92–99.

Ivanov, A. P.

E. P. Zege, A. P. Ivanov, I. L. Katsev, Image Transfer through a Scattering Medium (Springer-Verlag, New York, 1991).
[Crossref]

Katsev, I. L.

E. P. Zege, A. P. Ivanov, I. L. Katsev, Image Transfer through a Scattering Medium (Springer-Verlag, New York, 1991).
[Crossref]

E. P. Zege, I. L. Katsev, I. N. Polonsky, “Analytical solution of the lidar equation for cloud sounding taking into account multiple scattering,” presented at the Fifteenth International Laser Radar Conference, Tomsk, Russia, 23–27 July 1990.

Kattawar, G. W.

Kuga, Y.

Kunkel, K. E.

K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976).
[Crossref]

Mugnai, A.

C. Flesia, A. Mugnai, L. Stefanutti, “Depolarization effect by nonspherical particles on the lidar signal,” presented at the International Commission for Optics Topical Meeting on Atmospheric, Volume, and Surface Scattering and Propagation, Florence, Italy, 27–30 August 1991.

Olivieri, M.

P. Bruscaglioni, G. Zaccanti, M. Olivieri, “Laboratory simulation of the scattering of a laser beam in a turbid atmosphere,” J. Phys. D 21, S45–48 (1988).
[Crossref]

Pantani, L.

P. Bruscaglioni, G. Zaccanti, L. Pantani, L. Stefanutti, “An approximate procedure to isolate single scattering contribution to lidar returns from fogs,” Int. J. Remote Sensing 4, 399–417 (1983).
[Crossref]

Piatt, C. M. R.

C. M. R. Piatt, “Remote sounding of high clouds. III: Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
[Crossref]

Plass, G. N.

Polonsky, I. N.

E. P. Zege, I. L. Katsev, I. N. Polonsky, “Analytical solution of the lidar equation for cloud sounding taking into account multiple scattering,” presented at the Fifteenth International Laser Radar Conference, Tomsk, Russia, 23–27 July 1990.

Poole, L. R.

Querry, M. R.

Stefanutti, L.

P. Bruscaglioni, G. Zaccanti, L. Pantani, L. Stefanutti, “An approximate procedure to isolate single scattering contribution to lidar returns from fogs,” Int. J. Remote Sensing 4, 399–417 (1983).
[Crossref]

C. Flesia, A. Mugnai, L. Stefanutti, “Depolarization effect by nonspherical particles on the lidar signal,” presented at the International Commission for Optics Topical Meeting on Atmospheric, Volume, and Surface Scattering and Propagation, Florence, Italy, 27–30 August 1991.

Venable, D. D.

Weinman, J. A.

J. A. Weinman, “Effects of multiple scattering on light pulses reflected by turbid atmosphere,” J. Atmos. Sci. 33, 1763–1771 (1976).
[Crossref]

K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976).
[Crossref]

Zaccanti, G.

P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Simple scaling relationships for calculation of lidar returns from turbid media in multiple scattering regime,” J. Mod. Opt. 39, 1003–1015 (1992).
[Crossref]

G. Zaccanti, P. Bruscaglioni, M. Dami, “Simple inexpensive method of measuring the temporal spreading of a light pulse propagating in a turbid medium,” Appl. Opt. 29, 3938–3944 (1990).
[Crossref] [PubMed]

G. Zaccanti, P. Bruscaglioni, “Deviation from the Lambert–Beer law in the transmittance of a light beam through diffusing media: experimental results,” J. Mod. Opt. 35, 229–242 (1988).
[Crossref]

P. Bruscaglioni, G. Zaccanti, M. Olivieri, “Laboratory simulation of the scattering of a laser beam in a turbid atmosphere,” J. Phys. D 21, S45–48 (1988).
[Crossref]

P. Bruscaglioni, G. Zaccanti, L. Pantani, L. Stefanutti, “An approximate procedure to isolate single scattering contribution to lidar returns from fogs,” Int. J. Remote Sensing 4, 399–417 (1983).
[Crossref]

P. Bruscaglioni, A. Ismaelli, P. Donelli, G. Zaccanti, “Monte Carlo calculations of lidar returns from clouds. Depolarization due to multiple scattering,” in MUSCLE4: Proceedings of the Fourth International Workshop on Multiple Scattering Lidar Experiments, P. Bruscaglioni, ed. (Department of Physics, University of Florence, Florence, Italy, 1990), pp. 92–99.

Zege, E. P.

E. P. Zege, A. P. Ivanov, I. L. Katsev, Image Transfer through a Scattering Medium (Springer-Verlag, New York, 1991).
[Crossref]

E. P. Zege, I. L. Katsev, I. N. Polonsky, “Analytical solution of the lidar equation for cloud sounding taking into account multiple scattering,” presented at the Fifteenth International Laser Radar Conference, Tomsk, Russia, 23–27 July 1990.

Appl. Opt. (5)

Int. J. Remote Sensing (1)

P. Bruscaglioni, G. Zaccanti, L. Pantani, L. Stefanutti, “An approximate procedure to isolate single scattering contribution to lidar returns from fogs,” Int. J. Remote Sensing 4, 399–417 (1983).
[Crossref]

J. Atmos. Sci. (3)

C. M. R. Piatt, “Remote sounding of high clouds. III: Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
[Crossref]

J. A. Weinman, “Effects of multiple scattering on light pulses reflected by turbid atmosphere,” J. Atmos. Sci. 33, 1763–1771 (1976).
[Crossref]

K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976).
[Crossref]

J. Mod. Opt. (2)

P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Simple scaling relationships for calculation of lidar returns from turbid media in multiple scattering regime,” J. Mod. Opt. 39, 1003–1015 (1992).
[Crossref]

G. Zaccanti, P. Bruscaglioni, “Deviation from the Lambert–Beer law in the transmittance of a light beam through diffusing media: experimental results,” J. Mod. Opt. 35, 229–242 (1988).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. D (1)

P. Bruscaglioni, G. Zaccanti, M. Olivieri, “Laboratory simulation of the scattering of a laser beam in a turbid atmosphere,” J. Phys. D 21, S45–48 (1988).
[Crossref]

Other (7)

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

P. Bruscaglioni, A. Ismaelli, P. Donelli, G. Zaccanti, “Monte Carlo calculations of lidar returns from clouds. Depolarization due to multiple scattering,” in MUSCLE4: Proceedings of the Fourth International Workshop on Multiple Scattering Lidar Experiments, P. Bruscaglioni, ed. (Department of Physics, University of Florence, Florence, Italy, 1990), pp. 92–99.

E. P. Zege, A. P. Ivanov, I. L. Katsev, Image Transfer through a Scattering Medium (Springer-Verlag, New York, 1991).
[Crossref]

E. P. Zege, I. L. Katsev, I. N. Polonsky, “Analytical solution of the lidar equation for cloud sounding taking into account multiple scattering,” presented at the Fifteenth International Laser Radar Conference, Tomsk, Russia, 23–27 July 1990.

MUSCLE3: Third International Workshop on Multiple Scattering Lidar Experiments, Oberpfaffenhofen, Germany, 24–26 October 1989.

MUSCLE4: Fourth International Workshop on Multiple Scattering Lidar Experiments, Florence, Italy, 29–31 October 1990.

C. Flesia, A. Mugnai, L. Stefanutti, “Depolarization effect by nonspherical particles on the lidar signal,” presented at the International Commission for Optics Topical Meeting on Atmospheric, Volume, and Surface Scattering and Propagation, Florence, Italy, 27–30 August 1991.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Block diagram of the experimental setup. The laser beam is driven on the scattering cell by using mirrors (M1–M3) and a 50% plate beam splitter (BS). The optical receiver, coaxial with the laser beam in the backward direction, is made up of a lens L1 and a field diaphragm placed in the focal plane. The lens L2 is used to obtain a reduced image of the diaphragm on the input slit of the streak camera.

Fig. 2
Fig. 2

Phase functions evaluated with Mie theory for the water suspensions of polystyrene sphere used: λ = 0.760 μm; curves a, b, c, and d pertain to ϕ = 0.09, ϕ = 0.369, ϕ = 1.020, and ϕ = 5.4 μm, respectively. The phase function pertaining to the C1 cloud model (dashed curve) is also reported.

Fig. 3
Fig. 3

Examples of experimental results; solid and dotted curves represent the lidar echo for the parallel- and cross-polarized components, respectively, a, Curves a, b, and c pertain to τs = 0.6, τs = 3.0 and τs = 6.7, respectively; b, curves a, b, c, and d pertain to τs = 0.6, τs = 3.0, τs = 6.3, and τs = 13.2, respectively.

Fig. 4
Fig. 4

Comparison between the optical depth obtained by lidar echoes (τslidar) and the actual value (τs) obtained by transmissometric measurements. Both experimental (symbols) and numerical results (curves) were reported. Δ, *, □, and × pertain to experimental results for ϕ = 0.09, ϕ = 0.369, ϕ = 1.020, and ϕ = 5.4 μm, respectively. The corresponding numerical results are curves a, b, c, and d, respectively. The straight curve τslidar = τs is also shown for comparison (dashed curve).

Fig. 5
Fig. 5

Examples of experimental results for the ratio P/P between the cross and parallel components of the lidar echo. (When P/P = 1 the signal is totally depolarized.) a, b, c, and d pertain to ϕ = 0.09, ϕ = 0.369, ϕ = 1.020, and ϕ = 5.4 μm, respectively.

Fig. 6
Fig. 6

Examples of numerical results for the ratio P/P. a, b, c, and d pertain to ϕ = 0.09, ϕ = 0.369, ϕ = 1.020, and ϕ = 5.4 μm, respectively. The values of τs for which the results are shown are the same values in Fig. 5 for which the experimental results were reported.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I 1 ( d ) = I e σ s p ( π ) π R 2 ( D eq + d ) 2 exp ( 2 σ e d ) ,
ln I 1 ( d ) ln I e σ s p ( π ) π R 2 D eq 2 ( 1 D eq + σ e d ) .

Metrics