Abstract

The experimental results of an investigation of self-mixing effects or backscatter modulation in diode lasers coupled with a simple theoretical analysis are presented. The laser is used to send light, either in free space or through an optical fiber, to a movable target from which the optical backscatter is detected and fed back into the laser. In the experiment three significant conclusions are drawn: (1) self-mixing interference is not dependent on the coherence length of the laser, (2) the interference is not dependent on the use of a single-mode or multimode laser as the source, and (3) the interference is independent of the type of fiber employed, i.e., whether it is single mode or multimode. A comparison of this kind of interference with that in a conventional interferometer shows that self-mixing interference has the same phase sensitivity as that of the conventional arrangement, the modulation depth of the interference is comparable with that of a conventional interferometer, and the direction of the phase movement can be obtained from the interference signal. The above factors have implications for the optical sensing of a wide range of physical parameters. Several applications of the method are discussed that highlight the significant advantages of simplicity, compactness, and robustness as well as the self-aligning and self-detecting abilities of fiber-based self-mixing interferometry when compared with the use of conventional interference methods.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
    [CrossRef]
  2. M. Fujiwara, K. Kubota, R. Lang, “Low frequency intensity fluctuations in laser diodes with external optical feedback,” Appl. Phys. Lett. 38, 217–220 (1981).
    [CrossRef]
  3. F. Favre, D. L. Guen, J. S. Simon, “Optical feedback effects upon laser diode oscillation field spectrum,” IEEE J. Quantum Electron. QE-18, 1712–1717 (1982).
    [CrossRef]
  4. G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
    [CrossRef]
  5. J. S. Cohen, D. Lenstra, “Spectral properties of the coherence collapse state of a semiconductor laser with delayed optical feedback,” IEEE J. Quantum Electron. 25, 114–115 (1989).
    [CrossRef]
  6. S. Murata, S. Yamazaki, I. Mito, K. Kobayashi, “Spectral characteristics for 1.3 fm monolithic external cavity DFB lasers,” Electron. Lett. 22, 1197–1198 (1986).
    [CrossRef]
  7. E. Patzak, H. Olessen, A. Sugimura, S. Saito, T. Muka, “Spectral linewidth reduction in semiconductor lasers with weak optical feedback,” Electron. Lett. 19, 938–940 (1983).
    [CrossRef]
  8. G. P. Agrawal, “Line narrowing in a single-mode injection laser due to external optical feedback,” IEEE J. Quantum Electron. QE-20, 468–471 (1984).
    [CrossRef]
  9. H. Yasaka, Y. Yoshikuni, H. Kawaguchi, “FM noise and spectral linewidth reduction by incoherent optical negative feedback,” IEEE J. Quantum Electron. 27, 193–204 (1991).
    [CrossRef]
  10. W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, A. W. Palmer, “An interferometer incorporating active optical feedback from a diode laser with applications to coherent ranging and vibrational measurement,” presented at the Eighth Optical Fiber Sensors Conference, Monterey, Calif., 29–31 January 1992.
  11. O. Hirota, Y. Suematsu, “Noise properties of injection lasers due to reflected waves,” IEEE J. Quantum Electron. QE-15, 142–149 (1979).
    [CrossRef]
  12. G. P. Agrawal, N. A. Olsson, N. K. Dutta, “Effect of fiber-far end reflections on intensity and phase noise in InGaAsP semiconductor lasers,” Appl. Phys. Lett. 45, 959–957 (1984).
    [CrossRef]
  13. H. Temkin, N. A. Olsson, T. H. Abeles, R. A. Logan, M. B. Panish, “Reflection noise index guided InGaP lasers,” IEEE J. Quantum Electron. QE-22, 286–293 (1986).
    [CrossRef]
  14. R. O. Miles, A. Dandrige, A. B. Tveten, H. F. Taylor, T. G. Giallorenzi, “Feedback induced line broadening in cw channel substrate planar laser diodes,” Appl. Phys. Lett. 37, 990–992 (1980).
    [CrossRef]
  15. D. Lenstra, B. H. Verbeek, A. J. den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. QE-21, 674–679 (1985).
    [CrossRef]
  16. M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer-oscillator,” J. Phys. E 1, 723–726 (1968).
    [CrossRef]
  17. A. Dandridge, R. O. Miles, T. G. Giallorenz, “Diode laser sensors,” Electron. Lett. 16, 948–949 (1980).
    [CrossRef]
  18. J. H. Churnside, “Laser Doppler velocimetry by modulating a CO2 laser with backscattered light,” Appl. Opt. 23, 61–65 (1984).
    [CrossRef] [PubMed]
  19. J. H. Churnside, “Signal-to-noise in a backscatter-modulated Doppler velocimeter,” Appl. Opt. 23, 2079–2106 (1984).
    [CrossRef]
  20. S. Shinohara, A. Mochizuki, H. Yoshida, M. Sumi, “Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode,” Appl. Opt. 25, 1417–1419 (1986).
    [CrossRef] [PubMed]
  21. E. T. Shimizu, “Directional discrimination in the self-mixing type laser Doppler velocimeter,” Appl. Opt. 26, 4541–4544 (1987).
    [CrossRef] [PubMed]
  22. H. W. Jentink, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “Small laser Doppler velocimeter based on the self-mixing effect in a diode laser,” Appl. Opt. 27, 379–385 (1988).
    [CrossRef] [PubMed]
  23. P. J. de Groot, G. M. Gallatin, S. H. Macomber, “Ranging and velocimetry signal generation in a backscatter-modulated laser diode,” Appl. Opt. 27, 4475–4480 (1988).
    [CrossRef] [PubMed]
  24. P. J. de Groot, G. M. Gallatin, “Backscatter-modulation velocimetry with an external cavity laser diode,” Opt. Lett. 14, 165–167 (1989).
    [CrossRef] [PubMed]
  25. P. J. de Groot, “Range-dependent optical feedback effects on the multimode spectrum of laser diodes,” J. Mod. Opt. 37, 1199–1214 (1990).
    [CrossRef]
  26. M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “In vivo blood flow velocity measurement using the self-mixing effect in a fibre-coupled semiconductor laser,” in Fiber-Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511, 120–128 (1991).
  27. J. T. Verdeyen, “Laser oscillation and amplification,” in Laser Electronics (Prentice-Hall, Englewood Cliffs, N.J., 1981), Chap. 8, p. 159.
  28. J. H. Osmundsen, N. Grade, “Influence of optical feedback on laser frequency spectrum and threshold conditions,” IEEE J. Quantum Electron. QE-19, 465–469 (1983).
    [CrossRef]
  29. D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudo heterodyne detection scheme for optical interferometers,” Electron. Lett. 18, 1081–1083 (1982).
    [CrossRef]
  30. R. W. Tkach, A. R. Chraplyvy, “Regimes of feedback effects in 1.5 fm distributed feedback lasers,” IEEE J. Lightwave Technol. LT-4, 1655–1661 (1986).
    [CrossRef]
  31. L. Goldberg, H. F. Taylor, A. Dandrige, J. F. Weller, R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. QE-18, 555–564 (1982).
    [CrossRef]
  32. N. Schunk, K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor lasers with external feedback,” IEEE J. Quantum Electron. 24, 1242–1247 (1988).
    [CrossRef]
  33. A. Olsson, C. L. Tang, “Coherent optical interference effects in external cavity semiconductor lasers,” IEEE J. Quantum Electron. QE-17, 1320–1323 (1981).
    [CrossRef]
  34. J. S. Cohen, F. Wittgrefe, M. D. Hoogerland, J. P. Woerdman, “Optical spectra of a semiconductor laser with incoherent optical feedback,” IEEE J. Quantum Electron. 26, 982–990 (1990).
    [CrossRef]
  35. K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, The Netherlands, 1991), Chap. 1, p. 25.

1991

H. Yasaka, Y. Yoshikuni, H. Kawaguchi, “FM noise and spectral linewidth reduction by incoherent optical negative feedback,” IEEE J. Quantum Electron. 27, 193–204 (1991).
[CrossRef]

1990

P. J. de Groot, “Range-dependent optical feedback effects on the multimode spectrum of laser diodes,” J. Mod. Opt. 37, 1199–1214 (1990).
[CrossRef]

J. S. Cohen, F. Wittgrefe, M. D. Hoogerland, J. P. Woerdman, “Optical spectra of a semiconductor laser with incoherent optical feedback,” IEEE J. Quantum Electron. 26, 982–990 (1990).
[CrossRef]

1989

P. J. de Groot, G. M. Gallatin, “Backscatter-modulation velocimetry with an external cavity laser diode,” Opt. Lett. 14, 165–167 (1989).
[CrossRef] [PubMed]

J. S. Cohen, D. Lenstra, “Spectral properties of the coherence collapse state of a semiconductor laser with delayed optical feedback,” IEEE J. Quantum Electron. 25, 114–115 (1989).
[CrossRef]

1988

1987

1986

S. Shinohara, A. Mochizuki, H. Yoshida, M. Sumi, “Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode,” Appl. Opt. 25, 1417–1419 (1986).
[CrossRef] [PubMed]

R. W. Tkach, A. R. Chraplyvy, “Regimes of feedback effects in 1.5 fm distributed feedback lasers,” IEEE J. Lightwave Technol. LT-4, 1655–1661 (1986).
[CrossRef]

S. Murata, S. Yamazaki, I. Mito, K. Kobayashi, “Spectral characteristics for 1.3 fm monolithic external cavity DFB lasers,” Electron. Lett. 22, 1197–1198 (1986).
[CrossRef]

H. Temkin, N. A. Olsson, T. H. Abeles, R. A. Logan, M. B. Panish, “Reflection noise index guided InGaP lasers,” IEEE J. Quantum Electron. QE-22, 286–293 (1986).
[CrossRef]

1985

D. Lenstra, B. H. Verbeek, A. J. den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. QE-21, 674–679 (1985).
[CrossRef]

1984

G. P. Agrawal, “Line narrowing in a single-mode injection laser due to external optical feedback,” IEEE J. Quantum Electron. QE-20, 468–471 (1984).
[CrossRef]

G. P. Agrawal, N. A. Olsson, N. K. Dutta, “Effect of fiber-far end reflections on intensity and phase noise in InGaAsP semiconductor lasers,” Appl. Phys. Lett. 45, 959–957 (1984).
[CrossRef]

G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

J. H. Churnside, “Laser Doppler velocimetry by modulating a CO2 laser with backscattered light,” Appl. Opt. 23, 61–65 (1984).
[CrossRef] [PubMed]

J. H. Churnside, “Signal-to-noise in a backscatter-modulated Doppler velocimeter,” Appl. Opt. 23, 2079–2106 (1984).
[CrossRef]

1983

E. Patzak, H. Olessen, A. Sugimura, S. Saito, T. Muka, “Spectral linewidth reduction in semiconductor lasers with weak optical feedback,” Electron. Lett. 19, 938–940 (1983).
[CrossRef]

J. H. Osmundsen, N. Grade, “Influence of optical feedback on laser frequency spectrum and threshold conditions,” IEEE J. Quantum Electron. QE-19, 465–469 (1983).
[CrossRef]

1982

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudo heterodyne detection scheme for optical interferometers,” Electron. Lett. 18, 1081–1083 (1982).
[CrossRef]

F. Favre, D. L. Guen, J. S. Simon, “Optical feedback effects upon laser diode oscillation field spectrum,” IEEE J. Quantum Electron. QE-18, 1712–1717 (1982).
[CrossRef]

L. Goldberg, H. F. Taylor, A. Dandrige, J. F. Weller, R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. QE-18, 555–564 (1982).
[CrossRef]

1981

A. Olsson, C. L. Tang, “Coherent optical interference effects in external cavity semiconductor lasers,” IEEE J. Quantum Electron. QE-17, 1320–1323 (1981).
[CrossRef]

M. Fujiwara, K. Kubota, R. Lang, “Low frequency intensity fluctuations in laser diodes with external optical feedback,” Appl. Phys. Lett. 38, 217–220 (1981).
[CrossRef]

1980

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

R. O. Miles, A. Dandrige, A. B. Tveten, H. F. Taylor, T. G. Giallorenzi, “Feedback induced line broadening in cw channel substrate planar laser diodes,” Appl. Phys. Lett. 37, 990–992 (1980).
[CrossRef]

A. Dandridge, R. O. Miles, T. G. Giallorenz, “Diode laser sensors,” Electron. Lett. 16, 948–949 (1980).
[CrossRef]

1979

O. Hirota, Y. Suematsu, “Noise properties of injection lasers due to reflected waves,” IEEE J. Quantum Electron. QE-15, 142–149 (1979).
[CrossRef]

1968

M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer-oscillator,” J. Phys. E 1, 723–726 (1968).
[CrossRef]

Aarnoudse, J. G.

H. W. Jentink, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “Small laser Doppler velocimeter based on the self-mixing effect in a diode laser,” Appl. Opt. 27, 379–385 (1988).
[CrossRef] [PubMed]

M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “In vivo blood flow velocity measurement using the self-mixing effect in a fibre-coupled semiconductor laser,” in Fiber-Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511, 120–128 (1991).

Abeles, T. H.

H. Temkin, N. A. Olsson, T. H. Abeles, R. A. Logan, M. B. Panish, “Reflection noise index guided InGaP lasers,” IEEE J. Quantum Electron. QE-22, 286–293 (1986).
[CrossRef]

Acket, G. A.

G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, “Line narrowing in a single-mode injection laser due to external optical feedback,” IEEE J. Quantum Electron. QE-20, 468–471 (1984).
[CrossRef]

G. P. Agrawal, N. A. Olsson, N. K. Dutta, “Effect of fiber-far end reflections on intensity and phase noise in InGaAsP semiconductor lasers,” Appl. Phys. Lett. 45, 959–957 (1984).
[CrossRef]

Boyle, W. J. O.

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, A. W. Palmer, “An interferometer incorporating active optical feedback from a diode laser with applications to coherent ranging and vibrational measurement,” presented at the Eighth Optical Fiber Sensors Conference, Monterey, Calif., 29–31 January 1992.

Chraplyvy, A. R.

R. W. Tkach, A. R. Chraplyvy, “Regimes of feedback effects in 1.5 fm distributed feedback lasers,” IEEE J. Lightwave Technol. LT-4, 1655–1661 (1986).
[CrossRef]

Churnside, J. H.

J. H. Churnside, “Signal-to-noise in a backscatter-modulated Doppler velocimeter,” Appl. Opt. 23, 2079–2106 (1984).
[CrossRef]

J. H. Churnside, “Laser Doppler velocimetry by modulating a CO2 laser with backscattered light,” Appl. Opt. 23, 61–65 (1984).
[CrossRef] [PubMed]

Cohen, J. S.

J. S. Cohen, F. Wittgrefe, M. D. Hoogerland, J. P. Woerdman, “Optical spectra of a semiconductor laser with incoherent optical feedback,” IEEE J. Quantum Electron. 26, 982–990 (1990).
[CrossRef]

J. S. Cohen, D. Lenstra, “Spectral properties of the coherence collapse state of a semiconductor laser with delayed optical feedback,” IEEE J. Quantum Electron. 25, 114–115 (1989).
[CrossRef]

Corke, M.

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudo heterodyne detection scheme for optical interferometers,” Electron. Lett. 18, 1081–1083 (1982).
[CrossRef]

Dandridge, A.

A. Dandridge, R. O. Miles, T. G. Giallorenz, “Diode laser sensors,” Electron. Lett. 16, 948–949 (1980).
[CrossRef]

Dandrige, A.

L. Goldberg, H. F. Taylor, A. Dandrige, J. F. Weller, R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. QE-18, 555–564 (1982).
[CrossRef]

R. O. Miles, A. Dandrige, A. B. Tveten, H. F. Taylor, T. G. Giallorenzi, “Feedback induced line broadening in cw channel substrate planar laser diodes,” Appl. Phys. Lett. 37, 990–992 (1980).
[CrossRef]

Dassel, A. C. M.

M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “In vivo blood flow velocity measurement using the self-mixing effect in a fibre-coupled semiconductor laser,” in Fiber-Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511, 120–128 (1991).

de Groot, P. J.

de Mul, F. F. M.

H. W. Jentink, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “Small laser Doppler velocimeter based on the self-mixing effect in a diode laser,” Appl. Opt. 27, 379–385 (1988).
[CrossRef] [PubMed]

M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “In vivo blood flow velocity measurement using the self-mixing effect in a fibre-coupled semiconductor laser,” in Fiber-Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511, 120–128 (1991).

den Boef, A. J.

D. Lenstra, B. H. Verbeek, A. J. den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. QE-21, 674–679 (1985).
[CrossRef]

G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

Dutta, N. K.

G. P. Agrawal, N. A. Olsson, N. K. Dutta, “Effect of fiber-far end reflections on intensity and phase noise in InGaAsP semiconductor lasers,” Appl. Phys. Lett. 45, 959–957 (1984).
[CrossRef]

Favre, F.

F. Favre, D. L. Guen, J. S. Simon, “Optical feedback effects upon laser diode oscillation field spectrum,” IEEE J. Quantum Electron. QE-18, 1712–1717 (1982).
[CrossRef]

Fujiwara, M.

M. Fujiwara, K. Kubota, R. Lang, “Low frequency intensity fluctuations in laser diodes with external optical feedback,” Appl. Phys. Lett. 38, 217–220 (1981).
[CrossRef]

Gallatin, G. M.

Giallorenz, T. G.

A. Dandridge, R. O. Miles, T. G. Giallorenz, “Diode laser sensors,” Electron. Lett. 16, 948–949 (1980).
[CrossRef]

Giallorenzi, T. G.

R. O. Miles, A. Dandrige, A. B. Tveten, H. F. Taylor, T. G. Giallorenzi, “Feedback induced line broadening in cw channel substrate planar laser diodes,” Appl. Phys. Lett. 37, 990–992 (1980).
[CrossRef]

Goldberg, L.

L. Goldberg, H. F. Taylor, A. Dandrige, J. F. Weller, R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. QE-18, 555–564 (1982).
[CrossRef]

Graaff, R.

M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “In vivo blood flow velocity measurement using the self-mixing effect in a fibre-coupled semiconductor laser,” in Fiber-Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511, 120–128 (1991).

Grade, N.

J. H. Osmundsen, N. Grade, “Influence of optical feedback on laser frequency spectrum and threshold conditions,” IEEE J. Quantum Electron. QE-19, 465–469 (1983).
[CrossRef]

Grattan, K. T. V.

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, A. W. Palmer, “An interferometer incorporating active optical feedback from a diode laser with applications to coherent ranging and vibrational measurement,” presented at the Eighth Optical Fiber Sensors Conference, Monterey, Calif., 29–31 January 1992.

Greve, J.

H. W. Jentink, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “Small laser Doppler velocimeter based on the self-mixing effect in a diode laser,” Appl. Opt. 27, 379–385 (1988).
[CrossRef] [PubMed]

M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “In vivo blood flow velocity measurement using the self-mixing effect in a fibre-coupled semiconductor laser,” in Fiber-Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511, 120–128 (1991).

Guen, D. L.

F. Favre, D. L. Guen, J. S. Simon, “Optical feedback effects upon laser diode oscillation field spectrum,” IEEE J. Quantum Electron. QE-18, 1712–1717 (1982).
[CrossRef]

Hirota, O.

O. Hirota, Y. Suematsu, “Noise properties of injection lasers due to reflected waves,” IEEE J. Quantum Electron. QE-15, 142–149 (1979).
[CrossRef]

Hoogerland, M. D.

J. S. Cohen, F. Wittgrefe, M. D. Hoogerland, J. P. Woerdman, “Optical spectra of a semiconductor laser with incoherent optical feedback,” IEEE J. Quantum Electron. 26, 982–990 (1990).
[CrossRef]

Jackson, D. A.

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudo heterodyne detection scheme for optical interferometers,” Electron. Lett. 18, 1081–1083 (1982).
[CrossRef]

Jentink, H. W.

Jones, J. D. C.

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudo heterodyne detection scheme for optical interferometers,” Electron. Lett. 18, 1081–1083 (1982).
[CrossRef]

Kawaguchi, H.

H. Yasaka, Y. Yoshikuni, H. Kawaguchi, “FM noise and spectral linewidth reduction by incoherent optical negative feedback,” IEEE J. Quantum Electron. 27, 193–204 (1991).
[CrossRef]

Kersey, A. D.

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudo heterodyne detection scheme for optical interferometers,” Electron. Lett. 18, 1081–1083 (1982).
[CrossRef]

Kobayashi, K.

S. Murata, S. Yamazaki, I. Mito, K. Kobayashi, “Spectral characteristics for 1.3 fm monolithic external cavity DFB lasers,” Electron. Lett. 22, 1197–1198 (1986).
[CrossRef]

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

Koelink, M. K.

M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “In vivo blood flow velocity measurement using the self-mixing effect in a fibre-coupled semiconductor laser,” in Fiber-Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511, 120–128 (1991).

Kubota, K.

M. Fujiwara, K. Kubota, R. Lang, “Low frequency intensity fluctuations in laser diodes with external optical feedback,” Appl. Phys. Lett. 38, 217–220 (1981).
[CrossRef]

Lang, R.

M. Fujiwara, K. Kubota, R. Lang, “Low frequency intensity fluctuations in laser diodes with external optical feedback,” Appl. Phys. Lett. 38, 217–220 (1981).
[CrossRef]

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

Lenstra, D.

J. S. Cohen, D. Lenstra, “Spectral properties of the coherence collapse state of a semiconductor laser with delayed optical feedback,” IEEE J. Quantum Electron. 25, 114–115 (1989).
[CrossRef]

D. Lenstra, B. H. Verbeek, A. J. den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. QE-21, 674–679 (1985).
[CrossRef]

G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

Logan, R. A.

H. Temkin, N. A. Olsson, T. H. Abeles, R. A. Logan, M. B. Panish, “Reflection noise index guided InGaP lasers,” IEEE J. Quantum Electron. QE-22, 286–293 (1986).
[CrossRef]

Macomber, S. H.

Miles, R. O.

L. Goldberg, H. F. Taylor, A. Dandrige, J. F. Weller, R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. QE-18, 555–564 (1982).
[CrossRef]

R. O. Miles, A. Dandrige, A. B. Tveten, H. F. Taylor, T. G. Giallorenzi, “Feedback induced line broadening in cw channel substrate planar laser diodes,” Appl. Phys. Lett. 37, 990–992 (1980).
[CrossRef]

A. Dandridge, R. O. Miles, T. G. Giallorenz, “Diode laser sensors,” Electron. Lett. 16, 948–949 (1980).
[CrossRef]

Mito, I.

S. Murata, S. Yamazaki, I. Mito, K. Kobayashi, “Spectral characteristics for 1.3 fm monolithic external cavity DFB lasers,” Electron. Lett. 22, 1197–1198 (1986).
[CrossRef]

Mochizuki, A.

Muka, T.

E. Patzak, H. Olessen, A. Sugimura, S. Saito, T. Muka, “Spectral linewidth reduction in semiconductor lasers with weak optical feedback,” Electron. Lett. 19, 938–940 (1983).
[CrossRef]

Murata, S.

S. Murata, S. Yamazaki, I. Mito, K. Kobayashi, “Spectral characteristics for 1.3 fm monolithic external cavity DFB lasers,” Electron. Lett. 22, 1197–1198 (1986).
[CrossRef]

Olessen, H.

E. Patzak, H. Olessen, A. Sugimura, S. Saito, T. Muka, “Spectral linewidth reduction in semiconductor lasers with weak optical feedback,” Electron. Lett. 19, 938–940 (1983).
[CrossRef]

Olsson, A.

A. Olsson, C. L. Tang, “Coherent optical interference effects in external cavity semiconductor lasers,” IEEE J. Quantum Electron. QE-17, 1320–1323 (1981).
[CrossRef]

Olsson, N. A.

H. Temkin, N. A. Olsson, T. H. Abeles, R. A. Logan, M. B. Panish, “Reflection noise index guided InGaP lasers,” IEEE J. Quantum Electron. QE-22, 286–293 (1986).
[CrossRef]

G. P. Agrawal, N. A. Olsson, N. K. Dutta, “Effect of fiber-far end reflections on intensity and phase noise in InGaAsP semiconductor lasers,” Appl. Phys. Lett. 45, 959–957 (1984).
[CrossRef]

Osmundsen, J. H.

J. H. Osmundsen, N. Grade, “Influence of optical feedback on laser frequency spectrum and threshold conditions,” IEEE J. Quantum Electron. QE-19, 465–469 (1983).
[CrossRef]

Palmer, A. W.

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, A. W. Palmer, “An interferometer incorporating active optical feedback from a diode laser with applications to coherent ranging and vibrational measurement,” presented at the Eighth Optical Fiber Sensors Conference, Monterey, Calif., 29–31 January 1992.

Panish, M. B.

H. Temkin, N. A. Olsson, T. H. Abeles, R. A. Logan, M. B. Panish, “Reflection noise index guided InGaP lasers,” IEEE J. Quantum Electron. QE-22, 286–293 (1986).
[CrossRef]

Patzak, E.

E. Patzak, H. Olessen, A. Sugimura, S. Saito, T. Muka, “Spectral linewidth reduction in semiconductor lasers with weak optical feedback,” Electron. Lett. 19, 938–940 (1983).
[CrossRef]

Petermann, K.

N. Schunk, K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor lasers with external feedback,” IEEE J. Quantum Electron. 24, 1242–1247 (1988).
[CrossRef]

K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, The Netherlands, 1991), Chap. 1, p. 25.

Rudd, M. J.

M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer-oscillator,” J. Phys. E 1, 723–726 (1968).
[CrossRef]

Saito, S.

E. Patzak, H. Olessen, A. Sugimura, S. Saito, T. Muka, “Spectral linewidth reduction in semiconductor lasers with weak optical feedback,” Electron. Lett. 19, 938–940 (1983).
[CrossRef]

Schunk, N.

N. Schunk, K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor lasers with external feedback,” IEEE J. Quantum Electron. 24, 1242–1247 (1988).
[CrossRef]

Shimizu, E. T.

Shinohara, S.

Simon, J. S.

F. Favre, D. L. Guen, J. S. Simon, “Optical feedback effects upon laser diode oscillation field spectrum,” IEEE J. Quantum Electron. QE-18, 1712–1717 (1982).
[CrossRef]

Slot, M.

M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “In vivo blood flow velocity measurement using the self-mixing effect in a fibre-coupled semiconductor laser,” in Fiber-Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511, 120–128 (1991).

Suematsu, Y.

O. Hirota, Y. Suematsu, “Noise properties of injection lasers due to reflected waves,” IEEE J. Quantum Electron. QE-15, 142–149 (1979).
[CrossRef]

Sugimura, A.

E. Patzak, H. Olessen, A. Sugimura, S. Saito, T. Muka, “Spectral linewidth reduction in semiconductor lasers with weak optical feedback,” Electron. Lett. 19, 938–940 (1983).
[CrossRef]

Suichies, H. E.

Sumi, M.

Tang, C. L.

A. Olsson, C. L. Tang, “Coherent optical interference effects in external cavity semiconductor lasers,” IEEE J. Quantum Electron. QE-17, 1320–1323 (1981).
[CrossRef]

Taylor, H. F.

L. Goldberg, H. F. Taylor, A. Dandrige, J. F. Weller, R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. QE-18, 555–564 (1982).
[CrossRef]

R. O. Miles, A. Dandrige, A. B. Tveten, H. F. Taylor, T. G. Giallorenzi, “Feedback induced line broadening in cw channel substrate planar laser diodes,” Appl. Phys. Lett. 37, 990–992 (1980).
[CrossRef]

Temkin, H.

H. Temkin, N. A. Olsson, T. H. Abeles, R. A. Logan, M. B. Panish, “Reflection noise index guided InGaP lasers,” IEEE J. Quantum Electron. QE-22, 286–293 (1986).
[CrossRef]

Tkach, R. W.

R. W. Tkach, A. R. Chraplyvy, “Regimes of feedback effects in 1.5 fm distributed feedback lasers,” IEEE J. Lightwave Technol. LT-4, 1655–1661 (1986).
[CrossRef]

Tveten, A. B.

R. O. Miles, A. Dandrige, A. B. Tveten, H. F. Taylor, T. G. Giallorenzi, “Feedback induced line broadening in cw channel substrate planar laser diodes,” Appl. Phys. Lett. 37, 990–992 (1980).
[CrossRef]

Verbeek, B. H.

D. Lenstra, B. H. Verbeek, A. J. den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. QE-21, 674–679 (1985).
[CrossRef]

G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

Verdeyen, J. T.

J. T. Verdeyen, “Laser oscillation and amplification,” in Laser Electronics (Prentice-Hall, Englewood Cliffs, N.J., 1981), Chap. 8, p. 159.

Wang, W. M.

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, A. W. Palmer, “An interferometer incorporating active optical feedback from a diode laser with applications to coherent ranging and vibrational measurement,” presented at the Eighth Optical Fiber Sensors Conference, Monterey, Calif., 29–31 January 1992.

Weller, J. F.

L. Goldberg, H. F. Taylor, A. Dandrige, J. F. Weller, R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. QE-18, 555–564 (1982).
[CrossRef]

Wittgrefe, F.

J. S. Cohen, F. Wittgrefe, M. D. Hoogerland, J. P. Woerdman, “Optical spectra of a semiconductor laser with incoherent optical feedback,” IEEE J. Quantum Electron. 26, 982–990 (1990).
[CrossRef]

Woerdman, J. P.

J. S. Cohen, F. Wittgrefe, M. D. Hoogerland, J. P. Woerdman, “Optical spectra of a semiconductor laser with incoherent optical feedback,” IEEE J. Quantum Electron. 26, 982–990 (1990).
[CrossRef]

Yamazaki, S.

S. Murata, S. Yamazaki, I. Mito, K. Kobayashi, “Spectral characteristics for 1.3 fm monolithic external cavity DFB lasers,” Electron. Lett. 22, 1197–1198 (1986).
[CrossRef]

Yasaka, H.

H. Yasaka, Y. Yoshikuni, H. Kawaguchi, “FM noise and spectral linewidth reduction by incoherent optical negative feedback,” IEEE J. Quantum Electron. 27, 193–204 (1991).
[CrossRef]

Yoshida, H.

Yoshikuni, Y.

H. Yasaka, Y. Yoshikuni, H. Kawaguchi, “FM noise and spectral linewidth reduction by incoherent optical negative feedback,” IEEE J. Quantum Electron. 27, 193–204 (1991).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

R. O. Miles, A. Dandrige, A. B. Tveten, H. F. Taylor, T. G. Giallorenzi, “Feedback induced line broadening in cw channel substrate planar laser diodes,” Appl. Phys. Lett. 37, 990–992 (1980).
[CrossRef]

M. Fujiwara, K. Kubota, R. Lang, “Low frequency intensity fluctuations in laser diodes with external optical feedback,” Appl. Phys. Lett. 38, 217–220 (1981).
[CrossRef]

G. P. Agrawal, N. A. Olsson, N. K. Dutta, “Effect of fiber-far end reflections on intensity and phase noise in InGaAsP semiconductor lasers,” Appl. Phys. Lett. 45, 959–957 (1984).
[CrossRef]

Electron. Lett.

A. Dandridge, R. O. Miles, T. G. Giallorenz, “Diode laser sensors,” Electron. Lett. 16, 948–949 (1980).
[CrossRef]

S. Murata, S. Yamazaki, I. Mito, K. Kobayashi, “Spectral characteristics for 1.3 fm monolithic external cavity DFB lasers,” Electron. Lett. 22, 1197–1198 (1986).
[CrossRef]

E. Patzak, H. Olessen, A. Sugimura, S. Saito, T. Muka, “Spectral linewidth reduction in semiconductor lasers with weak optical feedback,” Electron. Lett. 19, 938–940 (1983).
[CrossRef]

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudo heterodyne detection scheme for optical interferometers,” Electron. Lett. 18, 1081–1083 (1982).
[CrossRef]

IEEE J. Lightwave Technol.

R. W. Tkach, A. R. Chraplyvy, “Regimes of feedback effects in 1.5 fm distributed feedback lasers,” IEEE J. Lightwave Technol. LT-4, 1655–1661 (1986).
[CrossRef]

IEEE J. Quantum Electron.

L. Goldberg, H. F. Taylor, A. Dandrige, J. F. Weller, R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. QE-18, 555–564 (1982).
[CrossRef]

N. Schunk, K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor lasers with external feedback,” IEEE J. Quantum Electron. 24, 1242–1247 (1988).
[CrossRef]

A. Olsson, C. L. Tang, “Coherent optical interference effects in external cavity semiconductor lasers,” IEEE J. Quantum Electron. QE-17, 1320–1323 (1981).
[CrossRef]

J. S. Cohen, F. Wittgrefe, M. D. Hoogerland, J. P. Woerdman, “Optical spectra of a semiconductor laser with incoherent optical feedback,” IEEE J. Quantum Electron. 26, 982–990 (1990).
[CrossRef]

D. Lenstra, B. H. Verbeek, A. J. den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. QE-21, 674–679 (1985).
[CrossRef]

J. H. Osmundsen, N. Grade, “Influence of optical feedback on laser frequency spectrum and threshold conditions,” IEEE J. Quantum Electron. QE-19, 465–469 (1983).
[CrossRef]

G. P. Agrawal, “Line narrowing in a single-mode injection laser due to external optical feedback,” IEEE J. Quantum Electron. QE-20, 468–471 (1984).
[CrossRef]

H. Yasaka, Y. Yoshikuni, H. Kawaguchi, “FM noise and spectral linewidth reduction by incoherent optical negative feedback,” IEEE J. Quantum Electron. 27, 193–204 (1991).
[CrossRef]

F. Favre, D. L. Guen, J. S. Simon, “Optical feedback effects upon laser diode oscillation field spectrum,” IEEE J. Quantum Electron. QE-18, 1712–1717 (1982).
[CrossRef]

G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

J. S. Cohen, D. Lenstra, “Spectral properties of the coherence collapse state of a semiconductor laser with delayed optical feedback,” IEEE J. Quantum Electron. 25, 114–115 (1989).
[CrossRef]

H. Temkin, N. A. Olsson, T. H. Abeles, R. A. Logan, M. B. Panish, “Reflection noise index guided InGaP lasers,” IEEE J. Quantum Electron. QE-22, 286–293 (1986).
[CrossRef]

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

O. Hirota, Y. Suematsu, “Noise properties of injection lasers due to reflected waves,” IEEE J. Quantum Electron. QE-15, 142–149 (1979).
[CrossRef]

J. Mod. Opt.

P. J. de Groot, “Range-dependent optical feedback effects on the multimode spectrum of laser diodes,” J. Mod. Opt. 37, 1199–1214 (1990).
[CrossRef]

J. Phys. E

M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer-oscillator,” J. Phys. E 1, 723–726 (1968).
[CrossRef]

Opt. Lett.

Other

K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, The Netherlands, 1991), Chap. 1, p. 25.

M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “In vivo blood flow velocity measurement using the self-mixing effect in a fibre-coupled semiconductor laser,” in Fiber-Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511, 120–128 (1991).

J. T. Verdeyen, “Laser oscillation and amplification,” in Laser Electronics (Prentice-Hall, Englewood Cliffs, N.J., 1981), Chap. 8, p. 159.

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, A. W. Palmer, “An interferometer incorporating active optical feedback from a diode laser with applications to coherent ranging and vibrational measurement,” presented at the Eighth Optical Fiber Sensors Conference, Monterey, Calif., 29–31 January 1992.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic experimental arrangement: PD, photodiode (integral); LD, laser diode, A, amplifier; D, distance; L1, L2, lenses.

Fig. 2
Fig. 2

Typical interference signals observed from self-mixing (vertical axis, arbitrary units; horizontal axis, 0.2 ms/division).

Fig. 3
Fig. 3

Visibility function obtained from the multimode laser diode (with output power of 2.5 mW) and determined with a Michelson interferometer.

Fig. 4
Fig. 4

Dependence of a self-mixing interference profile (for a multimode laser diode) on the distance of the external reflector from the laser.

Fig. 5
Fig. 5

Schematic experimental arrangement with a long multimode fiber between a laser and target. PD, photodiode; LD, laser diode; L1, L2, lenses; A, amplifier.

Fig. 6
Fig. 6

Current modulation and beat signals (a) without and (b) with mirror reflection (Vertical scale, arbitrary units; horizontal axis, 1.0 ms/division).

Fig. 7
Fig. 7

Sawtoothlike signal-output dependence on direction of phase variation.

Fig. 8
Fig. 8

Schematic experimental arrangement for a comparison between self-mixing interference and conventional two-beam interference: LD, laser diode; D1, D2, photodiodes, L1–L3, lenses; A, A1, A2, amplifiers; M1–M3, mirrors; BS, beam splitter.

Fig. 9
Fig. 9

Self-mixing interference patterns (upper trace) compared with conventional interference patterns lower trace) (vertical axis, arbitrary units; horizontal axis, 0.2 ms/division).

Fig. 10
Fig. 10

Self-mixing interference signals observed in two emission directions of a laser.

Fig. 11
Fig. 11

Schematic of a simple laser with external optical feedback: Lc, laser-cavity length; D, distance from laser-cavity front face to target; E1, electric field from back face; E2, combined electric field from front face and reflected from target; G1, G2, forward and backward gain coefficients in the laser cavity; r1–r3, reflectivities of the laser-cavity ends and the target; Z, direction.

Fig. 12
Fig. 12

Power-modulation dependence on external phase and reflectivity in self-mixing interference obtained from a theoretical model.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R 2 = R 2 [ 1 + ξ 2 + 2 ξ cos ( 2 π Δ L / λ ) ] ,
P 0 = ( h υ ) ( c / n ) ( S / 2 l ) ln ( 1 / R 1 R 2 ) ,
P P 0 [ 1 + ζ cos ( 2 π Δ L / λ ) ] ,

Metrics