Abstract

The experimental results of an investigation of self-mixing effects or backscatter modulation in diode lasers coupled with a simple theoretical analysis are presented. The laser is used to send light, either in free space or through an optical fiber, to a movable target from which the optical backscatter is detected and fed back into the laser. In the experiment three significant conclusions are drawn: (1) self-mixing interference is not dependent on the coherence length of the laser, (2) the interference is not dependent on the use of a single-mode or multimode laser as the source, and (3) the interference is independent of the type of fiber employed, i.e., whether it is single mode or multimode. A comparison of this kind of interference with that in a conventional interferometer shows that self-mixing interference has the same phase sensitivity as that of the conventional arrangement, the modulation depth of the interference is comparable with that of a conventional interferometer, and the direction of the phase movement can be obtained from the interference signal. The above factors have implications for the optical sensing of a wide range of physical parameters. Several applications of the method are discussed that highlight the significant advantages of simplicity, compactness, and robustness as well as the self-aligning and self-detecting abilities of fiber-based self-mixing interferometry when compared with the use of conventional interference methods.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription