Abstract

A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 104 cm−2 are discussed.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, N. H. Farhat, “Optical information processing based on an associative-memory model of neural nets with thresholding and feedback,” Opt. Lett. 10, 98–100 (1985).
    [CrossRef] [PubMed]
  2. D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
    [CrossRef]
  3. D. Z. Anderson, D. M. Linninger, “Dynamic optical interconnects: volume holograms as optical two-port operators,” Appl. Opt. 26, 5031–5038 (1987).
    [CrossRef] [PubMed]
  4. B. H. Soffer, G. J. Dunning, Y. Owechko, E. Marom, “Associative holographic memory with feedback using phase-conjugate mirrors,” Opt. Lett. 11, 118–120 (1986).
    [CrossRef] [PubMed]
  5. A. Yariv, Optical Electronics, 3rd ed. (Holt, Reinhart & Winston, New York, 1985), Chap. 15, p. 488.
  6. M. Orenstein, A. C. von Lehmen, C. Changhasnian, N. G. Stoffel, J. P. Harbinson, L. T. Florez, E. Clausen, J. E. Lewell, “Vertical-cavity surface-emitting InGaAs-GaAs-lasers with planar lateral definition,” Appl. Phys. Lett. 56, 2384–2386 (1990).
    [CrossRef]
  7. D. A. Miller, “Quantum wells for optical information processing,” Opt. Eng. 26, 368–372 (1987).
  8. L. K. Cotter, T. J. Drabik, R. J. Dillon, M. A. Handschy, “Ferroelectric liquid crystal silicon integrated circuit spatial light modulator,” Opt. Lett. 15, 291–293 (1990).
    [CrossRef] [PubMed]
  9. K. Kasahara, T. Numai, H. Kosaka, I. Ogura, “Vertical to surface transmission electrophotonic device (VSTEP) and its application to optical interconnection and information processing,” Inst. Electron. Inform. Commun. Eng. Trans. Fundamentals Elctron. Commun. Comput. Sci. E75A, 70–80 (1992).
  10. D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artifical neural networks,” Nature (London), 343, 325–330 (1990).
    [CrossRef]
  11. D. Marr, Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (Freeman, New York, 1983), Chap. 2.
  12. J. Hopfield, “Neurons with graded response have collective computational properties like those of two-state neurons,” Proc. Natl. Acad. Sci. USA 81, 3088–3092 (1984).
    [CrossRef] [PubMed]
  13. N. H. Farhat, D. Psaltis, A. Prata, E. G. Paek, “Optical implementation of the Hopfield model,” Appl. Opt. 24, 1469–1475 (1985).
    [CrossRef] [PubMed]
  14. A. Papoulis, Propability, Random Variables, and Stochastic Processes, 2nd ed. (McGraw-Hill, New York, 1984), p. 194.
  15. S. H. Lin, “Optoelectronic integrated circuits for optical neural network applications,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1991).
  16. T. P. Lee, A. G. Dentai, “Power and modulation bandwidth of GaAs-AlGaAs high-radiance LED’s for optical communication systems,” IEEE J. Quantum Electron. QE-14, 150–159 (1978).
  17. C. Juang, K. J. Kuhn, R. B. Darling, “Selective etching of GaAs and Al.3Ga.7As with citric acid/hydrogen peroxide solution,” J. Vac. Sci. Technol. B 5, 1122–1124 (1990)
    [CrossRef]
  18. D. Rumelhart, J. L. McClellandthe PDP Research Group, Parallel Distributed Processing: Explorations in the Microstructure of Cognition (MIT Press, Cambridge, Mass., 1986), Vol. 1.
  19. R. A. Milano, T. H. Windhorn, E. R. Anderson, G. E. Stillman, R. D. Dupuis, P. D. Dapkus, “Al0.5Ga0.5As-GaAs heterojunction phototransistors grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 34, 562 (1979).
    [CrossRef]
  20. N. Chand, P. A. Houston, P. N. Robson, “Gain of a heterojunction bipolar phototransistor,” IEEE Trans. Electron Devices ED-32, 622–627 (1985).
    [CrossRef]
  21. S. H. Lin, F. Ho, J. H. Kim, D. Psaltis, “Monolithic integrated optoelectronic thresholding devices for neural network applications,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C.1991), paper CTuD1.
  22. W. Kościelniak, J.-L. Pelouard, R. Kolbas, M. A. Littlejohn, “Dark current characteristics of GaAs metal-semiconductor-metal (MSM) photodetectors,” IEEE Trans. Electron Devices 37, 1623–1629 (1990).
    [CrossRef]
  23. J. C. Gammel, J. M. Ballantyne, “The OPFET: a new high speed optical detector,” in Digest of International Electron Device Meeting (Optical Society of America, Washington, D.C., 1978), pp. 120–121.
  24. J. C. Gammel, J. M. Ballantyne, “High speed photoresponse mechanism of a GaAs-MESFET,” Jpn. J. Appl. Phys. 19, L273 (1980).
    [CrossRef]
  25. J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Uryand, D. Wilt, M. Yust, A. Yariv, “Monolithic integration of a GaAlAs buried-heterostructure laser and a bipolar phototransistor,” Appl. Phys. Lett. 37, 211 (1980).
    [CrossRef]
  26. S. H. Lin, J. H. Kim, J. Katz, D. Psaltis, “Integration of high-gain double heterojunction GaAs bipolar transistors with a LED for optical neural network applications,” in Proceedings of the IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 344–352.
    [CrossRef]
  27. J. H. Kim, S. H. Lin, J. Katz, D. Psaltis, “Monolithically integrated two-dimensional arrays of optoelectronic threshold devices for neural network applications,” in Laser Diode Technology and Applications, L. Figueroa, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1043, 44–52. (1989).
  28. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), Chap. 2, p. 92.

1992 (1)

K. Kasahara, T. Numai, H. Kosaka, I. Ogura, “Vertical to surface transmission electrophotonic device (VSTEP) and its application to optical interconnection and information processing,” Inst. Electron. Inform. Commun. Eng. Trans. Fundamentals Elctron. Commun. Comput. Sci. E75A, 70–80 (1992).

1990 (5)

D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artifical neural networks,” Nature (London), 343, 325–330 (1990).
[CrossRef]

C. Juang, K. J. Kuhn, R. B. Darling, “Selective etching of GaAs and Al.3Ga.7As with citric acid/hydrogen peroxide solution,” J. Vac. Sci. Technol. B 5, 1122–1124 (1990)
[CrossRef]

W. Kościelniak, J.-L. Pelouard, R. Kolbas, M. A. Littlejohn, “Dark current characteristics of GaAs metal-semiconductor-metal (MSM) photodetectors,” IEEE Trans. Electron Devices 37, 1623–1629 (1990).
[CrossRef]

M. Orenstein, A. C. von Lehmen, C. Changhasnian, N. G. Stoffel, J. P. Harbinson, L. T. Florez, E. Clausen, J. E. Lewell, “Vertical-cavity surface-emitting InGaAs-GaAs-lasers with planar lateral definition,” Appl. Phys. Lett. 56, 2384–2386 (1990).
[CrossRef]

L. K. Cotter, T. J. Drabik, R. J. Dillon, M. A. Handschy, “Ferroelectric liquid crystal silicon integrated circuit spatial light modulator,” Opt. Lett. 15, 291–293 (1990).
[CrossRef] [PubMed]

1988 (1)

1987 (2)

1986 (1)

1985 (3)

1984 (1)

J. Hopfield, “Neurons with graded response have collective computational properties like those of two-state neurons,” Proc. Natl. Acad. Sci. USA 81, 3088–3092 (1984).
[CrossRef] [PubMed]

1980 (2)

J. C. Gammel, J. M. Ballantyne, “High speed photoresponse mechanism of a GaAs-MESFET,” Jpn. J. Appl. Phys. 19, L273 (1980).
[CrossRef]

J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Uryand, D. Wilt, M. Yust, A. Yariv, “Monolithic integration of a GaAlAs buried-heterostructure laser and a bipolar phototransistor,” Appl. Phys. Lett. 37, 211 (1980).
[CrossRef]

1979 (1)

R. A. Milano, T. H. Windhorn, E. R. Anderson, G. E. Stillman, R. D. Dupuis, P. D. Dapkus, “Al0.5Ga0.5As-GaAs heterojunction phototransistors grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 34, 562 (1979).
[CrossRef]

1978 (1)

T. P. Lee, A. G. Dentai, “Power and modulation bandwidth of GaAs-AlGaAs high-radiance LED’s for optical communication systems,” IEEE J. Quantum Electron. QE-14, 150–159 (1978).

Anderson, D. Z.

Anderson, E. R.

R. A. Milano, T. H. Windhorn, E. R. Anderson, G. E. Stillman, R. D. Dupuis, P. D. Dapkus, “Al0.5Ga0.5As-GaAs heterojunction phototransistors grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 34, 562 (1979).
[CrossRef]

Ballantyne, J. M.

J. C. Gammel, J. M. Ballantyne, “High speed photoresponse mechanism of a GaAs-MESFET,” Jpn. J. Appl. Phys. 19, L273 (1980).
[CrossRef]

J. C. Gammel, J. M. Ballantyne, “The OPFET: a new high speed optical detector,” in Digest of International Electron Device Meeting (Optical Society of America, Washington, D.C., 1978), pp. 120–121.

Bar-Chaim, N.

J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Uryand, D. Wilt, M. Yust, A. Yariv, “Monolithic integration of a GaAlAs buried-heterostructure laser and a bipolar phototransistor,” Appl. Phys. Lett. 37, 211 (1980).
[CrossRef]

Brady, D.

D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artifical neural networks,” Nature (London), 343, 325–330 (1990).
[CrossRef]

D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
[CrossRef]

Chand, N.

N. Chand, P. A. Houston, P. N. Robson, “Gain of a heterojunction bipolar phototransistor,” IEEE Trans. Electron Devices ED-32, 622–627 (1985).
[CrossRef]

Changhasnian, C.

M. Orenstein, A. C. von Lehmen, C. Changhasnian, N. G. Stoffel, J. P. Harbinson, L. T. Florez, E. Clausen, J. E. Lewell, “Vertical-cavity surface-emitting InGaAs-GaAs-lasers with planar lateral definition,” Appl. Phys. Lett. 56, 2384–2386 (1990).
[CrossRef]

Chen, P. C.

J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Uryand, D. Wilt, M. Yust, A. Yariv, “Monolithic integration of a GaAlAs buried-heterostructure laser and a bipolar phototransistor,” Appl. Phys. Lett. 37, 211 (1980).
[CrossRef]

Clausen, E.

M. Orenstein, A. C. von Lehmen, C. Changhasnian, N. G. Stoffel, J. P. Harbinson, L. T. Florez, E. Clausen, J. E. Lewell, “Vertical-cavity surface-emitting InGaAs-GaAs-lasers with planar lateral definition,” Appl. Phys. Lett. 56, 2384–2386 (1990).
[CrossRef]

Cotter, L. K.

Dapkus, P. D.

R. A. Milano, T. H. Windhorn, E. R. Anderson, G. E. Stillman, R. D. Dupuis, P. D. Dapkus, “Al0.5Ga0.5As-GaAs heterojunction phototransistors grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 34, 562 (1979).
[CrossRef]

Darling, R. B.

C. Juang, K. J. Kuhn, R. B. Darling, “Selective etching of GaAs and Al.3Ga.7As with citric acid/hydrogen peroxide solution,” J. Vac. Sci. Technol. B 5, 1122–1124 (1990)
[CrossRef]

Dentai, A. G.

T. P. Lee, A. G. Dentai, “Power and modulation bandwidth of GaAs-AlGaAs high-radiance LED’s for optical communication systems,” IEEE J. Quantum Electron. QE-14, 150–159 (1978).

Dillon, R. J.

Drabik, T. J.

Dunning, G. J.

Dupuis, R. D.

R. A. Milano, T. H. Windhorn, E. R. Anderson, G. E. Stillman, R. D. Dupuis, P. D. Dapkus, “Al0.5Ga0.5As-GaAs heterojunction phototransistors grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 34, 562 (1979).
[CrossRef]

Farhat, N. H.

Florez, L. T.

M. Orenstein, A. C. von Lehmen, C. Changhasnian, N. G. Stoffel, J. P. Harbinson, L. T. Florez, E. Clausen, J. E. Lewell, “Vertical-cavity surface-emitting InGaAs-GaAs-lasers with planar lateral definition,” Appl. Phys. Lett. 56, 2384–2386 (1990).
[CrossRef]

Gammel, J. C.

J. C. Gammel, J. M. Ballantyne, “High speed photoresponse mechanism of a GaAs-MESFET,” Jpn. J. Appl. Phys. 19, L273 (1980).
[CrossRef]

J. C. Gammel, J. M. Ballantyne, “The OPFET: a new high speed optical detector,” in Digest of International Electron Device Meeting (Optical Society of America, Washington, D.C., 1978), pp. 120–121.

Gu, X. G.

D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artifical neural networks,” Nature (London), 343, 325–330 (1990).
[CrossRef]

Handschy, M. A.

Harbinson, J. P.

M. Orenstein, A. C. von Lehmen, C. Changhasnian, N. G. Stoffel, J. P. Harbinson, L. T. Florez, E. Clausen, J. E. Lewell, “Vertical-cavity surface-emitting InGaAs-GaAs-lasers with planar lateral definition,” Appl. Phys. Lett. 56, 2384–2386 (1990).
[CrossRef]

Ho, F.

S. H. Lin, F. Ho, J. H. Kim, D. Psaltis, “Monolithic integrated optoelectronic thresholding devices for neural network applications,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C.1991), paper CTuD1.

Hopfield, J.

J. Hopfield, “Neurons with graded response have collective computational properties like those of two-state neurons,” Proc. Natl. Acad. Sci. USA 81, 3088–3092 (1984).
[CrossRef] [PubMed]

Houston, P. A.

N. Chand, P. A. Houston, P. N. Robson, “Gain of a heterojunction bipolar phototransistor,” IEEE Trans. Electron Devices ED-32, 622–627 (1985).
[CrossRef]

Juang, C.

C. Juang, K. J. Kuhn, R. B. Darling, “Selective etching of GaAs and Al.3Ga.7As with citric acid/hydrogen peroxide solution,” J. Vac. Sci. Technol. B 5, 1122–1124 (1990)
[CrossRef]

Kasahara, K.

K. Kasahara, T. Numai, H. Kosaka, I. Ogura, “Vertical to surface transmission electrophotonic device (VSTEP) and its application to optical interconnection and information processing,” Inst. Electron. Inform. Commun. Eng. Trans. Fundamentals Elctron. Commun. Comput. Sci. E75A, 70–80 (1992).

Katz, J.

J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Uryand, D. Wilt, M. Yust, A. Yariv, “Monolithic integration of a GaAlAs buried-heterostructure laser and a bipolar phototransistor,” Appl. Phys. Lett. 37, 211 (1980).
[CrossRef]

S. H. Lin, J. H. Kim, J. Katz, D. Psaltis, “Integration of high-gain double heterojunction GaAs bipolar transistors with a LED for optical neural network applications,” in Proceedings of the IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 344–352.
[CrossRef]

J. H. Kim, S. H. Lin, J. Katz, D. Psaltis, “Monolithically integrated two-dimensional arrays of optoelectronic threshold devices for neural network applications,” in Laser Diode Technology and Applications, L. Figueroa, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1043, 44–52. (1989).

Kim, J. H.

J. H. Kim, S. H. Lin, J. Katz, D. Psaltis, “Monolithically integrated two-dimensional arrays of optoelectronic threshold devices for neural network applications,” in Laser Diode Technology and Applications, L. Figueroa, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1043, 44–52. (1989).

S. H. Lin, J. H. Kim, J. Katz, D. Psaltis, “Integration of high-gain double heterojunction GaAs bipolar transistors with a LED for optical neural network applications,” in Proceedings of the IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 344–352.
[CrossRef]

S. H. Lin, F. Ho, J. H. Kim, D. Psaltis, “Monolithic integrated optoelectronic thresholding devices for neural network applications,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C.1991), paper CTuD1.

Kolbas, R.

W. Kościelniak, J.-L. Pelouard, R. Kolbas, M. A. Littlejohn, “Dark current characteristics of GaAs metal-semiconductor-metal (MSM) photodetectors,” IEEE Trans. Electron Devices 37, 1623–1629 (1990).
[CrossRef]

Kosaka, H.

K. Kasahara, T. Numai, H. Kosaka, I. Ogura, “Vertical to surface transmission electrophotonic device (VSTEP) and its application to optical interconnection and information processing,” Inst. Electron. Inform. Commun. Eng. Trans. Fundamentals Elctron. Commun. Comput. Sci. E75A, 70–80 (1992).

Koscielniak, W.

W. Kościelniak, J.-L. Pelouard, R. Kolbas, M. A. Littlejohn, “Dark current characteristics of GaAs metal-semiconductor-metal (MSM) photodetectors,” IEEE Trans. Electron Devices 37, 1623–1629 (1990).
[CrossRef]

Kuhn, K. J.

C. Juang, K. J. Kuhn, R. B. Darling, “Selective etching of GaAs and Al.3Ga.7As with citric acid/hydrogen peroxide solution,” J. Vac. Sci. Technol. B 5, 1122–1124 (1990)
[CrossRef]

Lee, T. P.

T. P. Lee, A. G. Dentai, “Power and modulation bandwidth of GaAs-AlGaAs high-radiance LED’s for optical communication systems,” IEEE J. Quantum Electron. QE-14, 150–159 (1978).

Lewell, J. E.

M. Orenstein, A. C. von Lehmen, C. Changhasnian, N. G. Stoffel, J. P. Harbinson, L. T. Florez, E. Clausen, J. E. Lewell, “Vertical-cavity surface-emitting InGaAs-GaAs-lasers with planar lateral definition,” Appl. Phys. Lett. 56, 2384–2386 (1990).
[CrossRef]

Lin, S.

D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artifical neural networks,” Nature (London), 343, 325–330 (1990).
[CrossRef]

Lin, S. H.

J. H. Kim, S. H. Lin, J. Katz, D. Psaltis, “Monolithically integrated two-dimensional arrays of optoelectronic threshold devices for neural network applications,” in Laser Diode Technology and Applications, L. Figueroa, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1043, 44–52. (1989).

S. H. Lin, “Optoelectronic integrated circuits for optical neural network applications,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1991).

S. H. Lin, J. H. Kim, J. Katz, D. Psaltis, “Integration of high-gain double heterojunction GaAs bipolar transistors with a LED for optical neural network applications,” in Proceedings of the IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 344–352.
[CrossRef]

S. H. Lin, F. Ho, J. H. Kim, D. Psaltis, “Monolithic integrated optoelectronic thresholding devices for neural network applications,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C.1991), paper CTuD1.

Linninger, D. M.

Littlejohn, M. A.

W. Kościelniak, J.-L. Pelouard, R. Kolbas, M. A. Littlejohn, “Dark current characteristics of GaAs metal-semiconductor-metal (MSM) photodetectors,” IEEE Trans. Electron Devices 37, 1623–1629 (1990).
[CrossRef]

Margalit, S.

J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Uryand, D. Wilt, M. Yust, A. Yariv, “Monolithic integration of a GaAlAs buried-heterostructure laser and a bipolar phototransistor,” Appl. Phys. Lett. 37, 211 (1980).
[CrossRef]

Marom, E.

Marr, D.

D. Marr, Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (Freeman, New York, 1983), Chap. 2.

McClelland, J. L.

D. Rumelhart, J. L. McClellandthe PDP Research Group, Parallel Distributed Processing: Explorations in the Microstructure of Cognition (MIT Press, Cambridge, Mass., 1986), Vol. 1.

Milano, R. A.

R. A. Milano, T. H. Windhorn, E. R. Anderson, G. E. Stillman, R. D. Dupuis, P. D. Dapkus, “Al0.5Ga0.5As-GaAs heterojunction phototransistors grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 34, 562 (1979).
[CrossRef]

Miller, D. A.

D. A. Miller, “Quantum wells for optical information processing,” Opt. Eng. 26, 368–372 (1987).

Numai, T.

K. Kasahara, T. Numai, H. Kosaka, I. Ogura, “Vertical to surface transmission electrophotonic device (VSTEP) and its application to optical interconnection and information processing,” Inst. Electron. Inform. Commun. Eng. Trans. Fundamentals Elctron. Commun. Comput. Sci. E75A, 70–80 (1992).

Ogura, I.

K. Kasahara, T. Numai, H. Kosaka, I. Ogura, “Vertical to surface transmission electrophotonic device (VSTEP) and its application to optical interconnection and information processing,” Inst. Electron. Inform. Commun. Eng. Trans. Fundamentals Elctron. Commun. Comput. Sci. E75A, 70–80 (1992).

Orenstein, M.

M. Orenstein, A. C. von Lehmen, C. Changhasnian, N. G. Stoffel, J. P. Harbinson, L. T. Florez, E. Clausen, J. E. Lewell, “Vertical-cavity surface-emitting InGaAs-GaAs-lasers with planar lateral definition,” Appl. Phys. Lett. 56, 2384–2386 (1990).
[CrossRef]

Owechko, Y.

Paek, E. G.

Papoulis, A.

A. Papoulis, Propability, Random Variables, and Stochastic Processes, 2nd ed. (McGraw-Hill, New York, 1984), p. 194.

Pelouard, J.-L.

W. Kościelniak, J.-L. Pelouard, R. Kolbas, M. A. Littlejohn, “Dark current characteristics of GaAs metal-semiconductor-metal (MSM) photodetectors,” IEEE Trans. Electron Devices 37, 1623–1629 (1990).
[CrossRef]

Prata, A.

Psaltis, D.

D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artifical neural networks,” Nature (London), 343, 325–330 (1990).
[CrossRef]

D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
[CrossRef]

D. Psaltis, N. H. Farhat, “Optical information processing based on an associative-memory model of neural nets with thresholding and feedback,” Opt. Lett. 10, 98–100 (1985).
[CrossRef] [PubMed]

N. H. Farhat, D. Psaltis, A. Prata, E. G. Paek, “Optical implementation of the Hopfield model,” Appl. Opt. 24, 1469–1475 (1985).
[CrossRef] [PubMed]

S. H. Lin, J. H. Kim, J. Katz, D. Psaltis, “Integration of high-gain double heterojunction GaAs bipolar transistors with a LED for optical neural network applications,” in Proceedings of the IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 344–352.
[CrossRef]

S. H. Lin, F. Ho, J. H. Kim, D. Psaltis, “Monolithic integrated optoelectronic thresholding devices for neural network applications,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C.1991), paper CTuD1.

J. H. Kim, S. H. Lin, J. Katz, D. Psaltis, “Monolithically integrated two-dimensional arrays of optoelectronic threshold devices for neural network applications,” in Laser Diode Technology and Applications, L. Figueroa, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1043, 44–52. (1989).

Robson, P. N.

N. Chand, P. A. Houston, P. N. Robson, “Gain of a heterojunction bipolar phototransistor,” IEEE Trans. Electron Devices ED-32, 622–627 (1985).
[CrossRef]

Rumelhart, D.

D. Rumelhart, J. L. McClellandthe PDP Research Group, Parallel Distributed Processing: Explorations in the Microstructure of Cognition (MIT Press, Cambridge, Mass., 1986), Vol. 1.

Soffer, B. H.

Stillman, G. E.

R. A. Milano, T. H. Windhorn, E. R. Anderson, G. E. Stillman, R. D. Dupuis, P. D. Dapkus, “Al0.5Ga0.5As-GaAs heterojunction phototransistors grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 34, 562 (1979).
[CrossRef]

Stoffel, N. G.

M. Orenstein, A. C. von Lehmen, C. Changhasnian, N. G. Stoffel, J. P. Harbinson, L. T. Florez, E. Clausen, J. E. Lewell, “Vertical-cavity surface-emitting InGaAs-GaAs-lasers with planar lateral definition,” Appl. Phys. Lett. 56, 2384–2386 (1990).
[CrossRef]

Sze, S. M.

S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), Chap. 2, p. 92.

Uryand, I.

J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Uryand, D. Wilt, M. Yust, A. Yariv, “Monolithic integration of a GaAlAs buried-heterostructure laser and a bipolar phototransistor,” Appl. Phys. Lett. 37, 211 (1980).
[CrossRef]

von Lehmen, A. C.

M. Orenstein, A. C. von Lehmen, C. Changhasnian, N. G. Stoffel, J. P. Harbinson, L. T. Florez, E. Clausen, J. E. Lewell, “Vertical-cavity surface-emitting InGaAs-GaAs-lasers with planar lateral definition,” Appl. Phys. Lett. 56, 2384–2386 (1990).
[CrossRef]

Wagner, K.

Wilt, D.

J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Uryand, D. Wilt, M. Yust, A. Yariv, “Monolithic integration of a GaAlAs buried-heterostructure laser and a bipolar phototransistor,” Appl. Phys. Lett. 37, 211 (1980).
[CrossRef]

Windhorn, T. H.

R. A. Milano, T. H. Windhorn, E. R. Anderson, G. E. Stillman, R. D. Dupuis, P. D. Dapkus, “Al0.5Ga0.5As-GaAs heterojunction phototransistors grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 34, 562 (1979).
[CrossRef]

Yariv, A.

J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Uryand, D. Wilt, M. Yust, A. Yariv, “Monolithic integration of a GaAlAs buried-heterostructure laser and a bipolar phototransistor,” Appl. Phys. Lett. 37, 211 (1980).
[CrossRef]

A. Yariv, Optical Electronics, 3rd ed. (Holt, Reinhart & Winston, New York, 1985), Chap. 15, p. 488.

Yust, M.

J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Uryand, D. Wilt, M. Yust, A. Yariv, “Monolithic integration of a GaAlAs buried-heterostructure laser and a bipolar phototransistor,” Appl. Phys. Lett. 37, 211 (1980).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

M. Orenstein, A. C. von Lehmen, C. Changhasnian, N. G. Stoffel, J. P. Harbinson, L. T. Florez, E. Clausen, J. E. Lewell, “Vertical-cavity surface-emitting InGaAs-GaAs-lasers with planar lateral definition,” Appl. Phys. Lett. 56, 2384–2386 (1990).
[CrossRef]

R. A. Milano, T. H. Windhorn, E. R. Anderson, G. E. Stillman, R. D. Dupuis, P. D. Dapkus, “Al0.5Ga0.5As-GaAs heterojunction phototransistors grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 34, 562 (1979).
[CrossRef]

J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Uryand, D. Wilt, M. Yust, A. Yariv, “Monolithic integration of a GaAlAs buried-heterostructure laser and a bipolar phototransistor,” Appl. Phys. Lett. 37, 211 (1980).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. P. Lee, A. G. Dentai, “Power and modulation bandwidth of GaAs-AlGaAs high-radiance LED’s for optical communication systems,” IEEE J. Quantum Electron. QE-14, 150–159 (1978).

IEEE Trans. Electron Devices (2)

N. Chand, P. A. Houston, P. N. Robson, “Gain of a heterojunction bipolar phototransistor,” IEEE Trans. Electron Devices ED-32, 622–627 (1985).
[CrossRef]

W. Kościelniak, J.-L. Pelouard, R. Kolbas, M. A. Littlejohn, “Dark current characteristics of GaAs metal-semiconductor-metal (MSM) photodetectors,” IEEE Trans. Electron Devices 37, 1623–1629 (1990).
[CrossRef]

Inst. Electron. Inform. Commun. Eng. Trans. Fundamentals Elctron. Commun. Comput. Sci. (1)

K. Kasahara, T. Numai, H. Kosaka, I. Ogura, “Vertical to surface transmission electrophotonic device (VSTEP) and its application to optical interconnection and information processing,” Inst. Electron. Inform. Commun. Eng. Trans. Fundamentals Elctron. Commun. Comput. Sci. E75A, 70–80 (1992).

J. Vac. Sci. Technol. B (1)

C. Juang, K. J. Kuhn, R. B. Darling, “Selective etching of GaAs and Al.3Ga.7As with citric acid/hydrogen peroxide solution,” J. Vac. Sci. Technol. B 5, 1122–1124 (1990)
[CrossRef]

Jpn. J. Appl. Phys. (1)

J. C. Gammel, J. M. Ballantyne, “High speed photoresponse mechanism of a GaAs-MESFET,” Jpn. J. Appl. Phys. 19, L273 (1980).
[CrossRef]

Nature (London) (1)

D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artifical neural networks,” Nature (London), 343, 325–330 (1990).
[CrossRef]

Opt. Eng. (1)

D. A. Miller, “Quantum wells for optical information processing,” Opt. Eng. 26, 368–372 (1987).

Opt. Lett. (3)

Proc. Natl. Acad. Sci. USA (1)

J. Hopfield, “Neurons with graded response have collective computational properties like those of two-state neurons,” Proc. Natl. Acad. Sci. USA 81, 3088–3092 (1984).
[CrossRef] [PubMed]

Other (10)

D. Marr, Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (Freeman, New York, 1983), Chap. 2.

A. Papoulis, Propability, Random Variables, and Stochastic Processes, 2nd ed. (McGraw-Hill, New York, 1984), p. 194.

S. H. Lin, “Optoelectronic integrated circuits for optical neural network applications,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1991).

D. Rumelhart, J. L. McClellandthe PDP Research Group, Parallel Distributed Processing: Explorations in the Microstructure of Cognition (MIT Press, Cambridge, Mass., 1986), Vol. 1.

S. H. Lin, F. Ho, J. H. Kim, D. Psaltis, “Monolithic integrated optoelectronic thresholding devices for neural network applications,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C.1991), paper CTuD1.

A. Yariv, Optical Electronics, 3rd ed. (Holt, Reinhart & Winston, New York, 1985), Chap. 15, p. 488.

J. C. Gammel, J. M. Ballantyne, “The OPFET: a new high speed optical detector,” in Digest of International Electron Device Meeting (Optical Society of America, Washington, D.C., 1978), pp. 120–121.

S. H. Lin, J. H. Kim, J. Katz, D. Psaltis, “Integration of high-gain double heterojunction GaAs bipolar transistors with a LED for optical neural network applications,” in Proceedings of the IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 344–352.
[CrossRef]

J. H. Kim, S. H. Lin, J. Katz, D. Psaltis, “Monolithically integrated two-dimensional arrays of optoelectronic threshold devices for neural network applications,” in Laser Diode Technology and Applications, L. Figueroa, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1043, 44–52. (1989).

S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), Chap. 2, p. 92.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Schematic diagram of the optoelectronic thresholding neuron circuit: VD, power supply voltage; VC, decector circuit voltage; VG, LED-driving MESFET gate voltage.

Fig. 2
Fig. 2

(a) Nonholographic and (b) holographic interconnection optical neural-network implementations.

Fig. 3
Fig. 3

Cross section of the LED structure, employing double Zn diffusion.

Fig. 4
Fig. 4

LED external efficiency both with and without antireflection coating as a function of the active-layer thickness with a nonzero absorption coefficient and an interfacial recombination velocity.

Fig. 5
Fig. 5

Self-aligned and passivated MESFET with a recessed asymmetric gate.

Fig. 6
Fig. 6

(a) Common-source IV characteristics of a MESFET showning a breakdown voltage of ~4 V. The initial turn-on voltage of 1 V is due to the LED, which is in series with the MESFET. The scales are 500 μA/division vertically and 1 V/division horizontally. (b) Reverse breakdown characteristics of the gate–drain Schottky diode (first quadrant) and the gate–source Schottky diode (third quadrant). The scales are 10 μA/division vertically and 1V/division horizontally.

Fig. 7
Fig. 7

(a) IV characteristics of the input switching circuit in the MESFET-based neurons with a different biasing voltage applied to the gate of the loading MESFET, (b) the gate voltage on the driving MESFET as a function of the optical input, where IDS is the current through the threshold MESFET or the photodetector, VB1 and VB2 are two different gate voltages on the threshold MESFET, and A–E in (a) and (b) indicate identical operating points.

Fig. 8
Fig. 8

Structure of a double-heterojunction phototransistor incorporating a p-doped GaAs layer as the base.

Fig. 9
Fig. 9

IV characteristics of the phototransistor. The intensity of the incoming laser beam is 90 μW. The scales for the vertical and horizontal axes are 20 μA/division and 2 V/division, respectively.

Fig. 10
Fig. 10

(a) Schematic circuit diagram of the optoelectronic neuron that incorporates two MESFET’s, a phototransistor, and an LED; (b) the cross-sectional view of the MESFET-based optoelectronic neuron monolithically integrating two MESFET’s, a LED, and a phototransistor.

Fig. 11
Fig. 11

Photomicrograph of a completely fabricated optoelectronic neuron. The input switching circuit is on the right side of the picture, and the output driving circuit is on the left side of the picture. The lower-left square is the LED, which is monolithically connected to the drain of the driving MESFET. The gate of the same MESFET is controlled by the combination of the phototransistor located at the lower-right corner of the picture and the loading MESFET, which is located immediately above the phototransistor. The windows of the LED and the phototransistor are 40 μm × 40 μm and 60 μm × 80 μm, respectively.

Fig. 12
Fig. 12

Input–output relationship of the phototransistor–MESFET-based optoelectronic neuron.

Fig. 13
Fig. 13

(a) Circuit diagram for the MSM-based neuron circuit, (b) the cross section of the processed epilayers for the monolithic integration of the MSM-based neuron circuit.

Fig. 14
Fig. 14

Output current as a function of input optical intensity for different optically set thresholds.

Fig. 15
Fig. 15

Cross-sectional view of an optical FET, where Ids is the drain–source photocurrent.

Fig. 16
Fig. 16

Efficiency of the optical FET as a function of input light intensity. The four curves correspond to four different dark currents, which correspond to the four different recessed depths.

Fig. 17
Fig. 17

Complete device cross-sectional view of the MESFET-based optoelectronic neuron incorporating the optical FET (OPFET) as the detector.

Fig. 18
Fig. 18

Input–output characteristics of the MESFET-based optoelectronic neuron that incorporates the optical FET.

Fig. 19
Fig. 19

(a) Schematic circuit diagram of an optoelectronic neuron incorporating two bipolar transistors (Q1 and Q2) to provide the gain needed to satisfy the loop gain requirement; (b) cross-sectional view of the monolithically integrated optoelectronic neuron that consists of two Zn-diffusion double-heterojunction bipolar transistors, which form a Darlington transistor pair, and an LED.

Fig. 20
Fig. 20

Common-emitter current gain as a function of the collector current at VCE = 3 V and VCE = 4.5 V.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

I = P max A N V D ,
P opt , LD = η LD ( I I th ) ,
P opt , LD N = η LD ( P max A V D I th N ) .
η i j = η 0 H ( C ) w i j ,
z j = i = 1 C η i j x i = η 0 H ( C ) i = 1 C w i j x i .
t H ( x ) = G [ w i j H ( C ) ] 1 / 2 exp ( j 2 π u i j x ) ,
H ( C ) 1 / G .
μ y = η D η 0 C E ( i = 1 C w i j x i ) = η D η 0 P p q , σ y 2 = ( η D η 0 C ) 2 E { ( i = 1 C w i j x i ) 2 } μ y 2 = ( η D η 0 P ) 2 C p q ( 1 p q ) .
P e = 1 2 πσ n σ y [ t exp [ ( n t ) 2 2 σ n 2 ] × t n exp [ ( y μ y ) 2 2 σ y 2 ] d y d n + t exp [ ( n t ) 2 2 σ n 2 ] × n t exp [ ( y μ y ) 2 2 σ y 2 ] d y d n ,
P e = 1 π tan 1 σ n σ y .
P max A = N P V D / η LED ,
N / A = { η 0 η D η LED P max V σ n C [ p q ( 1 p q ) ] 1 / 2 tan ( π P e ) } .
N / A = { η 0 η D η LED P max V σ n A [ p q ( 1 p q ) ] 1 / 2 tan ( π P e ) } 2 / 3 .
Δ V g R D R B R D + R B η D Δ P in ,
I = τ h τ t η P in ,
( η H ) ( η D ) ( η L ) ( β ) 1 ,
β ~ I c 1 ( 1 / n ) ,
C = [ tan ( π P e ) α ] 2 1 p q p q ,

Metrics