Abstract

An immersion grating with high refractive index n increases spectral resolution n-fold over that of a surface reflection grating of equal length.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Dekker, “An immersion grating for an astronomical spectrograph,” in Instrumentation for Ground-Based Optical Astronomy, L. B. Robinson, ed. (Springer-Verlag, Berlin, 1987), pp. 183–188.
  2. W.-T. Tsang, S. Wang, “Preferentially etched diffraction gratings in silicon,” J. Appl. Phys. 46, 2163–2166 (1975).
    [CrossRef]
  3. H. Davé, Applied Research Corporation, Landover, Md. 20785 (personal communication, 1990).

1975 (1)

W.-T. Tsang, S. Wang, “Preferentially etched diffraction gratings in silicon,” J. Appl. Phys. 46, 2163–2166 (1975).
[CrossRef]

Davé, H.

H. Davé, Applied Research Corporation, Landover, Md. 20785 (personal communication, 1990).

Dekker, H.

H. Dekker, “An immersion grating for an astronomical spectrograph,” in Instrumentation for Ground-Based Optical Astronomy, L. B. Robinson, ed. (Springer-Verlag, Berlin, 1987), pp. 183–188.

Tsang, W.-T.

W.-T. Tsang, S. Wang, “Preferentially etched diffraction gratings in silicon,” J. Appl. Phys. 46, 2163–2166 (1975).
[CrossRef]

Wang, S.

W.-T. Tsang, S. Wang, “Preferentially etched diffraction gratings in silicon,” J. Appl. Phys. 46, 2163–2166 (1975).
[CrossRef]

J. Appl. Phys. (1)

W.-T. Tsang, S. Wang, “Preferentially etched diffraction gratings in silicon,” J. Appl. Phys. 46, 2163–2166 (1975).
[CrossRef]

Other (2)

H. Davé, Applied Research Corporation, Landover, Md. 20785 (personal communication, 1990).

H. Dekker, “An immersion grating for an astronomical spectrograph,” in Instrumentation for Ground-Based Optical Astronomy, L. B. Robinson, ed. (Springer-Verlag, Berlin, 1987), pp. 183–188.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the prototype Si IR IG. The grating surface is inclined versus a (100) crystal plane and has blaze angles of 46° and 63°, which are used through the two entrance surfaces.

Fig. 2
Fig. 2

Groove geometry of the Si IG.

Fig. 3
Fig. 3

Immersion grating scan of a 1.523-μm laser line over interference orders near the 63° blaze angle.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ν n d ( sin α + sin β ) = m .
R = ν / δ ν = ( sin β + sin α ) / δ β cos β .
D Φ = W α n d α = W β n d β ,
δ ν = ν D Φ / L n ( sin α + sin β ) = ν D Φ / n z

Metrics