Abstract

A Fabry–Perot wavemeter for analyzing a pulsed laser operating in a single longitudinal mode with an injection-seeding technique has been constructed with an array detector. This wavemeter permits the real-time measurement of both the wavelength and the spectral effectiveness of the laser pulse produced at 10 Hz. The performance of the wavemeter is checked with a frequency-stabilized He–Ne laser and a double Nd:YAG laser that operates in the single longitudinal mode. The precision of the wavemeter is found to be < 10 MHz. Also, we calculated the uncertainties in determining the wave number by processing a Fabry–Perot fringe pattern imaged on a linear-array detector. The calculation is done by changing the number of pixels of the array detector, the finesse of the Fabry–Perot étalon, the waist of the incident laser beam, and the magnitude of random noise.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Schmitt, L. A. Rahn, “Diode-laser-pumped Nd:YAG laser injection seeding system,” Appl. Opt. 25, 629–633 (1986).
    [CrossRef] [PubMed]
  2. J. W. Hahn, S. N. Park, E. S. Lee, C. Rhee, “Construction and performance test of a coherent anti-Stokes Raman spectrometer,” Korean J. Appl. Phys. 4, 314–320 (1991).
  3. F. V. Kowalski, R. T. Hawkins, A. L. Schawlow, “Digital wavemeter for cw lasers,” J. Opt. Soc. Am. 66, 965–966 (1976).
    [CrossRef]
  4. P. Juncar, J. Pinard, “A new method for frequency calibration and control of a laser,” Opt. Commum. 14, 438–441 (1975)
    [CrossRef]
  5. P. Jacquinot, P. Juncar, J. Picard, “Motionless Michelson for high precision laser frequency measurements: the sigmameter,” in Laser Spectroscopy III, J. L. Hall, J. L. Carlsten, eds. (Springer-Verlag, Berlin, 1977).
  6. J. J. Snyder, “Fizeau wavelength meter,” in Laser Spectroscopy III, J. L. Hall, J. L. Carlsten, eds. (Springer-Verlag, Berlin; 1977).
  7. N. Konishi, T. Susuki, Y. Taira, H. Kato, T. Kasuya, “High precision wavelength meter with Fabry–Perot optics,” Appl. Phys. 25, 311–316 (1981).
    [CrossRef]
  8. A. Fischer, R. Kullmer, W. Demtröder, “Computer controlled Fabry–Perot wavemeter,” Opt. Commun. 39, 277–282 (1981).
    [CrossRef]
  9. J. J. Snyder, T. W. Hänsch, “Laser wavemeters,” in Dye Lasers, F. P. Schäfer, ed. (Springer-Verlag, Berlin, 1985).
  10. L. J. Contnoir, “Stand-alone instruments measure laser wavelengths,” Laser Focus World 25(4), 109–120 (1989).
  11. J. W. Hahn, S. N. Park, C. Rhee, “A Fabry–Perot wavemeter for a pulsed laser,” Korean J. Appl. Phys. 4, 309–313 (1991).
  12. R. D. Cutkosky, R. S. Davis, “Simple control circuit for temperature regulation and other bridge applications,” Rev. Sci. Instrum. 52, 1403–1405 (1981).
    [CrossRef]
  13. “Image sensing products,” EG&G reticon catalog (EG&G Reticon, Sunnyvale, Calif., 1987).
  14. K. W. Meissner, “Interference spectroscopy, part I,” J. Opt. Soc. Am. 31, 405–427 (1941).
    [CrossRef]

1991 (2)

J. W. Hahn, S. N. Park, E. S. Lee, C. Rhee, “Construction and performance test of a coherent anti-Stokes Raman spectrometer,” Korean J. Appl. Phys. 4, 314–320 (1991).

J. W. Hahn, S. N. Park, C. Rhee, “A Fabry–Perot wavemeter for a pulsed laser,” Korean J. Appl. Phys. 4, 309–313 (1991).

1989 (1)

L. J. Contnoir, “Stand-alone instruments measure laser wavelengths,” Laser Focus World 25(4), 109–120 (1989).

1986 (1)

1981 (3)

R. D. Cutkosky, R. S. Davis, “Simple control circuit for temperature regulation and other bridge applications,” Rev. Sci. Instrum. 52, 1403–1405 (1981).
[CrossRef]

N. Konishi, T. Susuki, Y. Taira, H. Kato, T. Kasuya, “High precision wavelength meter with Fabry–Perot optics,” Appl. Phys. 25, 311–316 (1981).
[CrossRef]

A. Fischer, R. Kullmer, W. Demtröder, “Computer controlled Fabry–Perot wavemeter,” Opt. Commun. 39, 277–282 (1981).
[CrossRef]

1976 (1)

1975 (1)

P. Juncar, J. Pinard, “A new method for frequency calibration and control of a laser,” Opt. Commum. 14, 438–441 (1975)
[CrossRef]

1941 (1)

Contnoir, L. J.

L. J. Contnoir, “Stand-alone instruments measure laser wavelengths,” Laser Focus World 25(4), 109–120 (1989).

Cutkosky, R. D.

R. D. Cutkosky, R. S. Davis, “Simple control circuit for temperature regulation and other bridge applications,” Rev. Sci. Instrum. 52, 1403–1405 (1981).
[CrossRef]

Davis, R. S.

R. D. Cutkosky, R. S. Davis, “Simple control circuit for temperature regulation and other bridge applications,” Rev. Sci. Instrum. 52, 1403–1405 (1981).
[CrossRef]

Demtröder, W.

A. Fischer, R. Kullmer, W. Demtröder, “Computer controlled Fabry–Perot wavemeter,” Opt. Commun. 39, 277–282 (1981).
[CrossRef]

Fischer, A.

A. Fischer, R. Kullmer, W. Demtröder, “Computer controlled Fabry–Perot wavemeter,” Opt. Commun. 39, 277–282 (1981).
[CrossRef]

Hahn, J. W.

J. W. Hahn, S. N. Park, C. Rhee, “A Fabry–Perot wavemeter for a pulsed laser,” Korean J. Appl. Phys. 4, 309–313 (1991).

J. W. Hahn, S. N. Park, E. S. Lee, C. Rhee, “Construction and performance test of a coherent anti-Stokes Raman spectrometer,” Korean J. Appl. Phys. 4, 314–320 (1991).

Hänsch, T. W.

J. J. Snyder, T. W. Hänsch, “Laser wavemeters,” in Dye Lasers, F. P. Schäfer, ed. (Springer-Verlag, Berlin, 1985).

Hawkins, R. T.

Jacquinot, P.

P. Jacquinot, P. Juncar, J. Picard, “Motionless Michelson for high precision laser frequency measurements: the sigmameter,” in Laser Spectroscopy III, J. L. Hall, J. L. Carlsten, eds. (Springer-Verlag, Berlin, 1977).

Juncar, P.

P. Juncar, J. Pinard, “A new method for frequency calibration and control of a laser,” Opt. Commum. 14, 438–441 (1975)
[CrossRef]

P. Jacquinot, P. Juncar, J. Picard, “Motionless Michelson for high precision laser frequency measurements: the sigmameter,” in Laser Spectroscopy III, J. L. Hall, J. L. Carlsten, eds. (Springer-Verlag, Berlin, 1977).

Kasuya, T.

N. Konishi, T. Susuki, Y. Taira, H. Kato, T. Kasuya, “High precision wavelength meter with Fabry–Perot optics,” Appl. Phys. 25, 311–316 (1981).
[CrossRef]

Kato, H.

N. Konishi, T. Susuki, Y. Taira, H. Kato, T. Kasuya, “High precision wavelength meter with Fabry–Perot optics,” Appl. Phys. 25, 311–316 (1981).
[CrossRef]

Konishi, N.

N. Konishi, T. Susuki, Y. Taira, H. Kato, T. Kasuya, “High precision wavelength meter with Fabry–Perot optics,” Appl. Phys. 25, 311–316 (1981).
[CrossRef]

Kowalski, F. V.

Kullmer, R.

A. Fischer, R. Kullmer, W. Demtröder, “Computer controlled Fabry–Perot wavemeter,” Opt. Commun. 39, 277–282 (1981).
[CrossRef]

Lee, E. S.

J. W. Hahn, S. N. Park, E. S. Lee, C. Rhee, “Construction and performance test of a coherent anti-Stokes Raman spectrometer,” Korean J. Appl. Phys. 4, 314–320 (1991).

Meissner, K. W.

Park, S. N.

J. W. Hahn, S. N. Park, C. Rhee, “A Fabry–Perot wavemeter for a pulsed laser,” Korean J. Appl. Phys. 4, 309–313 (1991).

J. W. Hahn, S. N. Park, E. S. Lee, C. Rhee, “Construction and performance test of a coherent anti-Stokes Raman spectrometer,” Korean J. Appl. Phys. 4, 314–320 (1991).

Picard, J.

P. Jacquinot, P. Juncar, J. Picard, “Motionless Michelson for high precision laser frequency measurements: the sigmameter,” in Laser Spectroscopy III, J. L. Hall, J. L. Carlsten, eds. (Springer-Verlag, Berlin, 1977).

Pinard, J.

P. Juncar, J. Pinard, “A new method for frequency calibration and control of a laser,” Opt. Commum. 14, 438–441 (1975)
[CrossRef]

Rahn, L. A.

Rhee, C.

J. W. Hahn, S. N. Park, E. S. Lee, C. Rhee, “Construction and performance test of a coherent anti-Stokes Raman spectrometer,” Korean J. Appl. Phys. 4, 314–320 (1991).

J. W. Hahn, S. N. Park, C. Rhee, “A Fabry–Perot wavemeter for a pulsed laser,” Korean J. Appl. Phys. 4, 309–313 (1991).

Schawlow, A. L.

Schmitt, R. L.

Snyder, J. J.

J. J. Snyder, “Fizeau wavelength meter,” in Laser Spectroscopy III, J. L. Hall, J. L. Carlsten, eds. (Springer-Verlag, Berlin; 1977).

J. J. Snyder, T. W. Hänsch, “Laser wavemeters,” in Dye Lasers, F. P. Schäfer, ed. (Springer-Verlag, Berlin, 1985).

Susuki, T.

N. Konishi, T. Susuki, Y. Taira, H. Kato, T. Kasuya, “High precision wavelength meter with Fabry–Perot optics,” Appl. Phys. 25, 311–316 (1981).
[CrossRef]

Taira, Y.

N. Konishi, T. Susuki, Y. Taira, H. Kato, T. Kasuya, “High precision wavelength meter with Fabry–Perot optics,” Appl. Phys. 25, 311–316 (1981).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (1)

N. Konishi, T. Susuki, Y. Taira, H. Kato, T. Kasuya, “High precision wavelength meter with Fabry–Perot optics,” Appl. Phys. 25, 311–316 (1981).
[CrossRef]

J. Opt. Soc. Am. (2)

Korean J. Appl. Phys. (2)

J. W. Hahn, S. N. Park, C. Rhee, “A Fabry–Perot wavemeter for a pulsed laser,” Korean J. Appl. Phys. 4, 309–313 (1991).

J. W. Hahn, S. N. Park, E. S. Lee, C. Rhee, “Construction and performance test of a coherent anti-Stokes Raman spectrometer,” Korean J. Appl. Phys. 4, 314–320 (1991).

Laser Focus World (1)

L. J. Contnoir, “Stand-alone instruments measure laser wavelengths,” Laser Focus World 25(4), 109–120 (1989).

Opt. Commum. (1)

P. Juncar, J. Pinard, “A new method for frequency calibration and control of a laser,” Opt. Commum. 14, 438–441 (1975)
[CrossRef]

Opt. Commun. (1)

A. Fischer, R. Kullmer, W. Demtröder, “Computer controlled Fabry–Perot wavemeter,” Opt. Commun. 39, 277–282 (1981).
[CrossRef]

Rev. Sci. Instrum. (1)

R. D. Cutkosky, R. S. Davis, “Simple control circuit for temperature regulation and other bridge applications,” Rev. Sci. Instrum. 52, 1403–1405 (1981).
[CrossRef]

Other (4)

“Image sensing products,” EG&G reticon catalog (EG&G Reticon, Sunnyvale, Calif., 1987).

J. J. Snyder, T. W. Hänsch, “Laser wavemeters,” in Dye Lasers, F. P. Schäfer, ed. (Springer-Verlag, Berlin, 1985).

P. Jacquinot, P. Juncar, J. Picard, “Motionless Michelson for high precision laser frequency measurements: the sigmameter,” in Laser Spectroscopy III, J. L. Hall, J. L. Carlsten, eds. (Springer-Verlag, Berlin, 1977).

J. J. Snyder, “Fizeau wavelength meter,” in Laser Spectroscopy III, J. L. Hall, J. L. Carlsten, eds. (Springer-Verlag, Berlin; 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optical layout of the Fabry–Perot pulsed wavemeter: A, linear array detector (1024 pixels); C, copper block; E, étalon-coated silver on both sides (reflectivity, 70%); H, heater; L1, diverging lens (f = −5 cm); L2, imaging lens (f = 50 cm); M1, M2, mirrors; P, platinum-resistance temperature sensor.

Fig. 2
Fig. 2

Block diagram of the electronic system for the wavemeter.

Fig. 3
Fig. 3

Shot-by-shot measurement of the ∊ with the wavemeter.

Fig. 4
Fig. 4

Typical video signal of the array detector: (a) the laser operating in a SLM; (b) the injection seeding is failed.

Fig. 5
Fig. 5

Change of the calculated ∊ after turning off the temperature controller.

Fig. 6
Fig. 6

Uncertainties calculated for variation of the number of pixels of the array detector.

Fig. 7
Fig. 7

Uncertainties calculated for variation of the finesse of the étalon.

Fig. 8
Fig. 8

Uncertainties calculated for variation of the waist of the Gaussian beam incident into the wavemeter.

Fig. 9
Fig. 9

Uncertainties calculated for variation of the percentage ratio of the random noise added to the signal of the array detector.

Metrics