Abstract

We report water-vapor absorption line measurements that are made by using the first Stokes radiation (930–982 nm) with HWHM 0.015 cm−1 generated by a narrow-linewidth, tunable dye laser. Forty-five absorption line strengths are measured with an uncertainty of 6% and among them are fourteen strong lines that are compared with previous measurements for the assessment of spectral purity of the light source. Thirty air-broadened linewidths are measured with 8% uncertainty at ambient atmospheric pressure with an average of 0.101 cm−1. The lines are selected for the purpose of temperature-sensitive or temperature-insensitive lidar measurements. Results for these line strengths and linewidths are corrected for broadband radiation and finite laser linewidth (0.015 cm−1 HWHM) broadening effects and compared with the high-resolution transmission molecular absorption.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 2472–3483 (1979).
    [CrossRef]
  2. S. Ismail, W. B. Grant, E. V. Browell, “Use of the DIAL technique to measure atmospheric water vapor over large concentration ranges,” in Optical Remove Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 190–193 (1991).
  3. T. D. Wilkerson, G. K. Schwemmer, “Lidar techniques for humidity and temperature measurement,” Opt. Eng. 21, 1022–1024 (1982).
  4. J. W. Swensson, W. S. Benedict, L. Delbouille, G. Roland, The Solar Spectrum from λ7498 to λ12016, Special Vol. 5 of Memoires de la Société Royale de Science de Liège (Société Royale de Science de Liège, Liège, Belgium, 1970).
  5. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The hitran database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  6. L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water absorption lines, 931–961 nm: selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423–436 (1982).
    [CrossRef]
  7. J. P. Chevillard, J. Y. Mandin, J. M. Flaud, C. Camy-Peyret, “H216O: line positions and intensities between 9500 and 11500 cm−1. The interacting vibrational states (041), (220), (121), (022), (300), (201), (102), and (003),” Can. J. Phys. 67, 1065–1084 (1989).
    [CrossRef]
  8. J. Y. Mandin, J. P. Chevillard, C. Camy-Peyret, J. M. Flaud, “N2 broadening coefficients of H216O lines between 9500 and 11500 cm−1,” J. Mol. Spectrosc. 138, 272–281 (1989).
    [CrossRef]
  9. R. R. Gamache, R. W. Davies, “Theoretical calculations of N2-broadened halfwidths of H2O using quantum Fourier transform theory,” Appl. Opt. 22, 4013–4019 (1983).
    [CrossRef] [PubMed]
  10. R. R. Gamache, L. S. Rothman, “Temperature dependence of N2-broadened halfwidths of water vapor: the pure rotation and ν2 bands,” J. Mol. Spectrosc. 128, 360–369 (1988).
    [CrossRef]
  11. U. N. Singh, Z. Chu, R. Mahon, T. D. Wilkerson, “Optimization of a Raman shifted dye laser system for DIAL applications,” Appl. Opt. 29, 1730–1735 (1990).
    [CrossRef] [PubMed]
  12. T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 collision-broadening coefficients measured for selected H2O absorption lines between 715 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
    [CrossRef]
  13. J. W. Brault, J. S. Fender, D. N. B. Hall, “Absorption coefficients of selected atmospheric water lines,” J. Quant. Spectrosc. Radiat. Transfer 15, 549–551 (1975).
    [CrossRef]
  14. M. Endemann, R. L. Byer, “Simultaneous remote measurements of atmospheric temperature and humidity using a continuously tunable IR lidar,” Appl. Opt. 20, 3211–3217 (1981).
    [CrossRef] [PubMed]
  15. P. Lebow, S. Strobel, T. D. Wilkerson, L. Cotnoir, A. Rosenberg, “Remote laser measurement of temperature and humidity using differential absorption in atmospheric water vapor,” in Conference Proceedings of the Eleventh International Laser Radar Conference, NASA Conf. Publ. 2228 (NASA Langley Research Center, Hampton, Va., 1982), pp. 30–32.
  16. A. Rosenberg, D. B. Hogan, “Lidar technique of simultaneous temperature and humidity measurements: analysis of Mason’s method,” Appl. Opt. 20, 3286–3288 (1981).
    [CrossRef] [PubMed]
  17. S. Hasegawa, J. W. Little, “The NBS two pressure humidity generator, Mark 2,” J. Res. Nat. Bur. Stand. Sect. A 81, 81–88 (1977).
    [CrossRef]
  18. A. Wexler, “Vapor pressure formulation for water in range 0 to 100°C. A revision,” J. Res. Nat. Bur. Stand. Sect. A 80, 775–785 (1976).
    [CrossRef]
  19. B. H. Armstrong, “Spectrum line profiles: The Voigt function,” J. Quant. Spectrosc. Radiat. Transfer 7, 61–88 (1967).
    [CrossRef]
  20. J. J. Olivero, R. L. Longbothum, “Empirical fits to the Voigt linewidth: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977).
    [CrossRef]
  21. G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Ref. Sci. Instrum. 58, 2226–2237 (1987).
    [CrossRef]

1990

1989

J. P. Chevillard, J. Y. Mandin, J. M. Flaud, C. Camy-Peyret, “H216O: line positions and intensities between 9500 and 11500 cm−1. The interacting vibrational states (041), (220), (121), (022), (300), (201), (102), and (003),” Can. J. Phys. 67, 1065–1084 (1989).
[CrossRef]

J. Y. Mandin, J. P. Chevillard, C. Camy-Peyret, J. M. Flaud, “N2 broadening coefficients of H216O lines between 9500 and 11500 cm−1,” J. Mol. Spectrosc. 138, 272–281 (1989).
[CrossRef]

1988

R. R. Gamache, L. S. Rothman, “Temperature dependence of N2-broadened halfwidths of water vapor: the pure rotation and ν2 bands,” J. Mol. Spectrosc. 128, 360–369 (1988).
[CrossRef]

1987

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The hitran database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Ref. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

1983

1982

L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water absorption lines, 931–961 nm: selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423–436 (1982).
[CrossRef]

T. D. Wilkerson, G. K. Schwemmer, “Lidar techniques for humidity and temperature measurement,” Opt. Eng. 21, 1022–1024 (1982).

1981

1979

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 2472–3483 (1979).
[CrossRef]

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 collision-broadening coefficients measured for selected H2O absorption lines between 715 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
[CrossRef]

1977

S. Hasegawa, J. W. Little, “The NBS two pressure humidity generator, Mark 2,” J. Res. Nat. Bur. Stand. Sect. A 81, 81–88 (1977).
[CrossRef]

J. J. Olivero, R. L. Longbothum, “Empirical fits to the Voigt linewidth: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977).
[CrossRef]

1976

A. Wexler, “Vapor pressure formulation for water in range 0 to 100°C. A revision,” J. Res. Nat. Bur. Stand. Sect. A 80, 775–785 (1976).
[CrossRef]

1975

J. W. Brault, J. S. Fender, D. N. B. Hall, “Absorption coefficients of selected atmospheric water lines,” J. Quant. Spectrosc. Radiat. Transfer 15, 549–551 (1975).
[CrossRef]

1967

B. H. Armstrong, “Spectrum line profiles: The Voigt function,” J. Quant. Spectrosc. Radiat. Transfer 7, 61–88 (1967).
[CrossRef]

Armstrong, B. H.

B. H. Armstrong, “Spectrum line profiles: The Voigt function,” J. Quant. Spectrosc. Radiat. Transfer 7, 61–88 (1967).
[CrossRef]

Barbe, A.

Benedict, W. S.

J. W. Swensson, W. S. Benedict, L. Delbouille, G. Roland, The Solar Spectrum from λ7498 to λ12016, Special Vol. 5 of Memoires de la Société Royale de Science de Liège (Société Royale de Science de Liège, Liège, Belgium, 1970).

Brault, J. W.

J. W. Brault, J. S. Fender, D. N. B. Hall, “Absorption coefficients of selected atmospheric water lines,” J. Quant. Spectrosc. Radiat. Transfer 15, 549–551 (1975).
[CrossRef]

Browell, E. V.

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 2472–3483 (1979).
[CrossRef]

S. Ismail, W. B. Grant, E. V. Browell, “Use of the DIAL technique to measure atmospheric water vapor over large concentration ranges,” in Optical Remove Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 190–193 (1991).

Brown, L. R.

Byer, R. L.

Camy-Peyret, C.

J. P. Chevillard, J. Y. Mandin, J. M. Flaud, C. Camy-Peyret, “H216O: line positions and intensities between 9500 and 11500 cm−1. The interacting vibrational states (041), (220), (121), (022), (300), (201), (102), and (003),” Can. J. Phys. 67, 1065–1084 (1989).
[CrossRef]

J. Y. Mandin, J. P. Chevillard, C. Camy-Peyret, J. M. Flaud, “N2 broadening coefficients of H216O lines between 9500 and 11500 cm−1,” J. Mol. Spectrosc. 138, 272–281 (1989).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The hitran database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Chevillard, J. P.

J. Y. Mandin, J. P. Chevillard, C. Camy-Peyret, J. M. Flaud, “N2 broadening coefficients of H216O lines between 9500 and 11500 cm−1,” J. Mol. Spectrosc. 138, 272–281 (1989).
[CrossRef]

J. P. Chevillard, J. Y. Mandin, J. M. Flaud, C. Camy-Peyret, “H216O: line positions and intensities between 9500 and 11500 cm−1. The interacting vibrational states (041), (220), (121), (022), (300), (201), (102), and (003),” Can. J. Phys. 67, 1065–1084 (1989).
[CrossRef]

Chu, Z.

Cotnoir, L.

P. Lebow, S. Strobel, T. D. Wilkerson, L. Cotnoir, A. Rosenberg, “Remote laser measurement of temperature and humidity using differential absorption in atmospheric water vapor,” in Conference Proceedings of the Eleventh International Laser Radar Conference, NASA Conf. Publ. 2228 (NASA Langley Research Center, Hampton, Va., 1982), pp. 30–32.

Davies, R. W.

Delbouille, L.

J. W. Swensson, W. S. Benedict, L. Delbouille, G. Roland, The Solar Spectrum from λ7498 to λ12016, Special Vol. 5 of Memoires de la Société Royale de Science de Liège (Société Royale de Science de Liège, Liège, Belgium, 1970).

Dombrowski, M.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Ref. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Endemann, M.

Fender, J. S.

J. W. Brault, J. S. Fender, D. N. B. Hall, “Absorption coefficients of selected atmospheric water lines,” J. Quant. Spectrosc. Radiat. Transfer 15, 549–551 (1975).
[CrossRef]

Flaud, J. M.

J. P. Chevillard, J. Y. Mandin, J. M. Flaud, C. Camy-Peyret, “H216O: line positions and intensities between 9500 and 11500 cm−1. The interacting vibrational states (041), (220), (121), (022), (300), (201), (102), and (003),” Can. J. Phys. 67, 1065–1084 (1989).
[CrossRef]

J. Y. Mandin, J. P. Chevillard, C. Camy-Peyret, J. M. Flaud, “N2 broadening coefficients of H216O lines between 9500 and 11500 cm−1,” J. Mol. Spectrosc. 138, 272–281 (1989).
[CrossRef]

Flaud, J.-M.

Gamache, R. R.

Gentry, B.

L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water absorption lines, 931–961 nm: selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423–436 (1982).
[CrossRef]

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 collision-broadening coefficients measured for selected H2O absorption lines between 715 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
[CrossRef]

Giver, L. P.

L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water absorption lines, 931–961 nm: selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423–436 (1982).
[CrossRef]

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 collision-broadening coefficients measured for selected H2O absorption lines between 715 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
[CrossRef]

Goldman, A.

Grant, W. B.

S. Ismail, W. B. Grant, E. V. Browell, “Use of the DIAL technique to measure atmospheric water vapor over large concentration ranges,” in Optical Remove Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 190–193 (1991).

Hall, D. N. B.

J. W. Brault, J. S. Fender, D. N. B. Hall, “Absorption coefficients of selected atmospheric water lines,” J. Quant. Spectrosc. Radiat. Transfer 15, 549–551 (1975).
[CrossRef]

Hasegawa, S.

S. Hasegawa, J. W. Little, “The NBS two pressure humidity generator, Mark 2,” J. Res. Nat. Bur. Stand. Sect. A 81, 81–88 (1977).
[CrossRef]

Hogan, D. B.

Husson, N.

Ismail, S.

S. Ismail, W. B. Grant, E. V. Browell, “Use of the DIAL technique to measure atmospheric water vapor over large concentration ranges,” in Optical Remove Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 190–193 (1991).

Kagann, R.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Ref. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Korb, C. L.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Ref. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Lebow, P.

P. Lebow, S. Strobel, T. D. Wilkerson, L. Cotnoir, A. Rosenberg, “Remote laser measurement of temperature and humidity using differential absorption in atmospheric water vapor,” in Conference Proceedings of the Eleventh International Laser Radar Conference, NASA Conf. Publ. 2228 (NASA Langley Research Center, Hampton, Va., 1982), pp. 30–32.

Little, J. W.

S. Hasegawa, J. W. Little, “The NBS two pressure humidity generator, Mark 2,” J. Res. Nat. Bur. Stand. Sect. A 81, 81–88 (1977).
[CrossRef]

Longbothum, R. L.

J. J. Olivero, R. L. Longbothum, “Empirical fits to the Voigt linewidth: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977).
[CrossRef]

Mahon, R.

Mandin, J. Y.

J. Y. Mandin, J. P. Chevillard, C. Camy-Peyret, J. M. Flaud, “N2 broadening coefficients of H216O lines between 9500 and 11500 cm−1,” J. Mol. Spectrosc. 138, 272–281 (1989).
[CrossRef]

J. P. Chevillard, J. Y. Mandin, J. M. Flaud, C. Camy-Peyret, “H216O: line positions and intensities between 9500 and 11500 cm−1. The interacting vibrational states (041), (220), (121), (022), (300), (201), (102), and (003),” Can. J. Phys. 67, 1065–1084 (1989).
[CrossRef]

McIlrath, T. J.

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 2472–3483 (1979).
[CrossRef]

Milrod, J.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Ref. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Olivero, J. J.

J. J. Olivero, R. L. Longbothum, “Empirical fits to the Voigt linewidth: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977).
[CrossRef]

Pickett, H. M.

Poynter, R. L.

Rinsland, C. P.

Roland, G.

J. W. Swensson, W. S. Benedict, L. Delbouille, G. Roland, The Solar Spectrum from λ7498 to λ12016, Special Vol. 5 of Memoires de la Société Royale de Science de Liège (Société Royale de Science de Liège, Liège, Belgium, 1970).

Rosenberg, A.

A. Rosenberg, D. B. Hogan, “Lidar technique of simultaneous temperature and humidity measurements: analysis of Mason’s method,” Appl. Opt. 20, 3286–3288 (1981).
[CrossRef] [PubMed]

P. Lebow, S. Strobel, T. D. Wilkerson, L. Cotnoir, A. Rosenberg, “Remote laser measurement of temperature and humidity using differential absorption in atmospheric water vapor,” in Conference Proceedings of the Eleventh International Laser Radar Conference, NASA Conf. Publ. 2228 (NASA Langley Research Center, Hampton, Va., 1982), pp. 30–32.

Rothman, L. S.

Schwemmer, G.

L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water absorption lines, 931–961 nm: selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423–436 (1982).
[CrossRef]

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 collision-broadening coefficients measured for selected H2O absorption lines between 715 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
[CrossRef]

Schwemmer, G. K.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Ref. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

T. D. Wilkerson, G. K. Schwemmer, “Lidar techniques for humidity and temperature measurement,” Opt. Eng. 21, 1022–1024 (1982).

Singh, U. N.

Smith, M. A. H.

Strobel, S.

P. Lebow, S. Strobel, T. D. Wilkerson, L. Cotnoir, A. Rosenberg, “Remote laser measurement of temperature and humidity using differential absorption in atmospheric water vapor,” in Conference Proceedings of the Eleventh International Laser Radar Conference, NASA Conf. Publ. 2228 (NASA Langley Research Center, Hampton, Va., 1982), pp. 30–32.

Swensson, J. W.

J. W. Swensson, W. S. Benedict, L. Delbouille, G. Roland, The Solar Spectrum from λ7498 to λ12016, Special Vol. 5 of Memoires de la Société Royale de Science de Liège (Société Royale de Science de Liège, Liège, Belgium, 1970).

Toth, R. A.

Walden, H.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Ref. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Wexler, A.

A. Wexler, “Vapor pressure formulation for water in range 0 to 100°C. A revision,” J. Res. Nat. Bur. Stand. Sect. A 80, 775–785 (1976).
[CrossRef]

Wilkerson, T. D.

U. N. Singh, Z. Chu, R. Mahon, T. D. Wilkerson, “Optimization of a Raman shifted dye laser system for DIAL applications,” Appl. Opt. 29, 1730–1735 (1990).
[CrossRef] [PubMed]

T. D. Wilkerson, G. K. Schwemmer, “Lidar techniques for humidity and temperature measurement,” Opt. Eng. 21, 1022–1024 (1982).

L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water absorption lines, 931–961 nm: selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423–436 (1982).
[CrossRef]

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 2472–3483 (1979).
[CrossRef]

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 collision-broadening coefficients measured for selected H2O absorption lines between 715 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
[CrossRef]

P. Lebow, S. Strobel, T. D. Wilkerson, L. Cotnoir, A. Rosenberg, “Remote laser measurement of temperature and humidity using differential absorption in atmospheric water vapor,” in Conference Proceedings of the Eleventh International Laser Radar Conference, NASA Conf. Publ. 2228 (NASA Langley Research Center, Hampton, Va., 1982), pp. 30–32.

Appl. Opt.

Can. J. Phys.

J. P. Chevillard, J. Y. Mandin, J. M. Flaud, C. Camy-Peyret, “H216O: line positions and intensities between 9500 and 11500 cm−1. The interacting vibrational states (041), (220), (121), (022), (300), (201), (102), and (003),” Can. J. Phys. 67, 1065–1084 (1989).
[CrossRef]

J. Mol. Spectrosc.

J. Y. Mandin, J. P. Chevillard, C. Camy-Peyret, J. M. Flaud, “N2 broadening coefficients of H216O lines between 9500 and 11500 cm−1,” J. Mol. Spectrosc. 138, 272–281 (1989).
[CrossRef]

R. R. Gamache, L. S. Rothman, “Temperature dependence of N2-broadened halfwidths of water vapor: the pure rotation and ν2 bands,” J. Mol. Spectrosc. 128, 360–369 (1988).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 collision-broadening coefficients measured for selected H2O absorption lines between 715 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979).
[CrossRef]

J. W. Brault, J. S. Fender, D. N. B. Hall, “Absorption coefficients of selected atmospheric water lines,” J. Quant. Spectrosc. Radiat. Transfer 15, 549–551 (1975).
[CrossRef]

B. H. Armstrong, “Spectrum line profiles: The Voigt function,” J. Quant. Spectrosc. Radiat. Transfer 7, 61–88 (1967).
[CrossRef]

J. J. Olivero, R. L. Longbothum, “Empirical fits to the Voigt linewidth: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977).
[CrossRef]

L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water absorption lines, 931–961 nm: selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423–436 (1982).
[CrossRef]

J. Res. Nat. Bur. Stand. Sect. A

S. Hasegawa, J. W. Little, “The NBS two pressure humidity generator, Mark 2,” J. Res. Nat. Bur. Stand. Sect. A 81, 81–88 (1977).
[CrossRef]

A. Wexler, “Vapor pressure formulation for water in range 0 to 100°C. A revision,” J. Res. Nat. Bur. Stand. Sect. A 80, 775–785 (1976).
[CrossRef]

Opt. Eng.

T. D. Wilkerson, G. K. Schwemmer, “Lidar techniques for humidity and temperature measurement,” Opt. Eng. 21, 1022–1024 (1982).

Ref. Sci. Instrum.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Ref. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Other

P. Lebow, S. Strobel, T. D. Wilkerson, L. Cotnoir, A. Rosenberg, “Remote laser measurement of temperature and humidity using differential absorption in atmospheric water vapor,” in Conference Proceedings of the Eleventh International Laser Radar Conference, NASA Conf. Publ. 2228 (NASA Langley Research Center, Hampton, Va., 1982), pp. 30–32.

J. W. Swensson, W. S. Benedict, L. Delbouille, G. Roland, The Solar Spectrum from λ7498 to λ12016, Special Vol. 5 of Memoires de la Société Royale de Science de Liège (Société Royale de Science de Liège, Liège, Belgium, 1970).

S. Ismail, W. B. Grant, E. V. Browell, “Use of the DIAL technique to measure atmospheric water vapor over large concentration ranges,” in Optical Remove Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 190–193 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for water-vapor absorption line measurements in the 940-nm range. OMA, optical multichannel analyzer; Osc, oscillator.

Fig. 2
Fig. 2

Calibrations to laser linewidth (0.015 cm−1 HWHM) broadening effect for determining Voigt central cross section σV and Lorentz linewidth γL from the measured central cross section σmeas and HWHM γmeas.

Fig. 3
Fig. 3

(a). Comparison of 53 line strengths of Chevillard et al.7 (S2) with Giver et al.6 (S1) at T = 300 K. The average ratio S2/S1 is 0.96. (b). S0 measured on 14 lines in this study and from Chevillard et al. as a function of S0 from Giver et al. for the determination of spectral purity. The unit used in (a) is inverse square centimeters times inverse atmosphere and in (b) is inverse centimeter per molecule per square centimeter with a conversion relation of ( cm - 2 atm - 1 ) = L T 0 / T ( cm - 1 / molecule / cm 2 ) ,where T0 = 273.15 K, T = 300 K in (a), and L = 2.686754 × 1019 cm−3 at STP.

Fig. 4
Fig. 4

Comparison of the current line strength measurements of 31 spectral lines, which are taken by using the stimulated Raman scattering technique with the results from Chevillard et al.7

Fig. 5
Fig. 5

Air-broadened Lorentz linewidths in this measurement are plotted as functions of the calculation data from hitran-91.

Fig. 6
Fig. 6

Rotational quantum number J″ dependence of the Lorentz linewidths γL0 (partially filled boxes). The filled boxes indicate the averages for different J″.

Tables (3)

Tables Icon

Table 1 Positions, Energy Levels, Assignments and Strengths S0 of the 14 H2O Absorption Lines Selected Here for Spectral Purity Confirmationa

Tables Icon

Table 2 Positions, Energy Levels, Assignments, Measured Strengths S0, Air-broadened Lorentz Linewidths λL0 and Line Center Cross Sections σL0 for 17 H2O Absorption Lines (Temperature Insensitive) at STP Conditionsa

Tables Icon

Table 3 Positions, Energy Levels, Assignments, Measured Strengths S0, Air-Broadened Lorentz Linewidths γL0, and Line Center Cross Sections σL0 for 14 H2O Absorption Lines (Temperature Insensitive) at STP Conditionsa

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

τ 0 = - ln [ ( B / A ) min ( B / A ) max ] ,
σ ( ν ) meas = τ ( ν ) meas n H 2 O L
RH = e / e s ,
n H 2 O = e k T = RH e s k T ,
σ meas = - 1 n H 2 O L ln - + G ( ν - ν 0 ) × exp [ - n L σ ( ν - ν 0 ) ] d ( ν - ν 0 ) ,
σ ( ν - σ 0 ) = S V ( ν - ν 0 ) ,
V ( ν - ν 0 ) = 1 γ D ( ln 2 π ) 1 / 2 y π - + exp ( - t 2 ) y 2 + ( x - t ) 2 d t , y = ( ln 2 ) 1 / 2 γ D γ L , x = ( ln 2 ) 1 / 2 γ D ( ν - ν 0 ) ,
γ V = ½ [ 1.0692 γ L + ( 0.86639 γ L 2 + 4 γ D 2 ) 1 / 2 ] .
S 0 = S ( T T 0 ) 1.5 exp [ h c E k ( 1 T - 1 T 0 ) ] ,
γ L 0 = γ L ( p 0 / p ) ( T / T 0 ) n ,
σ L 0 = S 0 π γ L 0 ,
Δ T = - T ln T Δ τ τ 0.016.
τ 0 = - ln [ ( B / A ) min ( B / A ) max + ( B / A ) broad ( B / A ) max ] = - ln ( T narrow + T broad ) .
( cm - 2 atm - 1 ) = L T 0 / T ( cm - 1 / molecule / cm 2 ) ,

Metrics