Abstract

ArF-laser-produced microplasmas in CO, CO2, methanol, and chloroform are studied by time-resolved emission measurements of the plasma decay. Electron densities are deduced from Stark broadening of the line profiles of atomic H, C, O, and Cl. Plasma ionization and excitation temperatures are determined from measurements of relative populations of ionic and neutral species produced in the plasmas. A discussion of the thermodynamic equilibrium status of ArF-laser microplasmas is presented. In general, the ArF-laser-produced microplasma environment is found to be similar in all the gases studied, in terms of both temperature (15,000–20,000 K) and electron density (1017 cm−3–1018 cm−3), despite the considerable differences observed in the breakdown thresholds and relative energies deposited in the various gases.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Neimax, W. Sdorra, “Optical emission spectrometry and laser-induced flourescence of laser produced plasmas,” Appl. Opt. 29, 5000–5006 (1990).
    [CrossRef]
  2. A. Quentmeier, W. Sdorra, K. Neimax, “Internal standardization in laser induced fluorescence spectrometry of microplasmas produced by laser ablation of solid samples,” Spectrochim. Acta 45B, 537–546 (1990).
  3. D. A. Cremers, “The analysis of metals at a distance using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 572–579 (1987).
    [CrossRef]
  4. K. J. Grant, G. L. Paul, “Electron temperature and density profiles of excimer laser-induced plasmas,” Appl. Spectrosc. 44, 1349–1354 (1990).
    [CrossRef]
  5. V. Majidi, J. T. Rae, J. Ratliff, “Determination of trace metals using an electrothermal atomizer by laser-induced plasma atomic emission spectrometry,” Anal. Chem. 63, 1600–1602 (1991).
    [CrossRef]
  6. L. Nanai, I. Hevesi, “Time-resolved spectral investigations of laser light induced microplasma,” Spectrochim. Acta 48A, 19–24 (1992).
  7. D. A. Cremers, L. J. Radziemski, T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
    [CrossRef]
  8. J. R. Wachter, D. A. Cremers, “Determination of uranium in solution using laser-induced breakdown spectrometry,” Appl. Spectrosc. 41, 1042–1048 (1987).
    [CrossRef]
  9. L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffmann, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246–1252 (1983).
    [CrossRef]
  10. D. A. Cremers, L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry,” Anal. Chem. 55, 1252–1256 (1983).
    [CrossRef]
  11. M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
    [CrossRef]
  12. R. J. Locke, J. B. Morris, B. E. Forch, A. W. Miziolek, “Ultraviolet laser microplasma-gas chromatography detector: detection of species-specific fragment emission,” Appl. Opt. 29, 4987–4992 (1990).
    [CrossRef] [PubMed]
  13. J. B. Morris, B. E. Forch, A. W. Miziolek, “A novel detector for gas chromatography based on UV laser-produced microplasmas,” Appl. Spectrosc. 44, 1040–1043 (1990).
    [CrossRef]
  14. K. C. Ng, N. L. Ayala, J. B. Simeonsson, J. D. Winefordner, “Laser-induced plasma atomic emission spectrometry in liquid aerosols,” Anal. Chim. Acta (to be published).
    [PubMed]
  15. D. C. Smith, R. G. Meyerand, “Laser radiation induced gas breakdown,” in Principles of Laser Plasmas, G. Bekefi, ed. (Wiley, New York, 1976), pp. 458–478.
  16. R. C. Sausa, A. J. Alfano, A. W. Miziolek, “Efficient ArF laser production and detection of carbon atoms from simple hydrocarbons,” Appl. Opt. 26, 3588–3593 (1987).
    [CrossRef] [PubMed]
  17. H. F. Dobele, B. Ruckle, “Detection of carbon impurities in plasmas by atomic fluorescence spectroscopy,” J. Nucl. Mater. 111/112, 102–104 (1982).
    [CrossRef]
  18. H. F. Dobele, B. Ruckle, “Concentration measurements of metastable C-atoms in a carbon arc by atomic fluorescence spectroscopy using an ArF ultraviolet laser,” Plasma Phys. 24, 1419–1428(1982).
    [CrossRef]
  19. W. L. Wiese, “Line broadening,” in Plasma Diagnostic Techniques, R. H. Huddlestone, S. L. Leonard, eds. (Academic, New York, 1965), pp. 269–299.
  20. H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974), Chap. 3, pp. 170–211.
  21. L. J. Radziemski, D. A. Cremers, T. M. Niemezyk, “Measurement of the properties of a CO2 laser induced air-plasma by double floating probe and spectroscopic techniques,” Spectrochim. Acta 40B, 517–525 (1985).
  22. J. H. Eickmanns, W.-F. Hsieh, R. K. Chang, “Plasma spectroscopy of H, Li and Na in plumes resulting from laser-induced droplet explosion,” Appl. Opt. 26, 3721–3725 (1987).
    [CrossRef]
  23. W. Lochte-Holtgreven, “Evaluation of plasma parameters,” in Plasma Diagnostics, W. Lochte-Holtgreven, ed. (Wiley, New York, 1968), pp. 147–148 and 180–182.
  24. W. L. Wiese, M. W. Smith, B. M. Glennon, Hydrogen through Neon, Vol. I of Atomic Transition Probabilities, NSRDS-NBS-4 (U.S. Government Printing Office, Washington, D.C., 1966).
  25. W. L. Wiese, M. W. Smith, B. M. Miles, Sodium through Calcium, Vol. II of Atomic Transition Probabilities, NSRDS-NBS-22 (U.S. Government Printing Office, Washington, D.C., 1969).
  26. G. Bekefi, C. Deutsch, B. Yaakobi, “Spectroscopic diagnostics of laser plasmas,” in Principles of Laser Plasmas, G. Bekefi, ed. (Wiley, New York, 1976), pp. 592–594.
  27. H. R. Griem, “Validity of local thermal equilibrium in plasma spectroscopy,” Phys. Rev. 131, 1170–1176 (1963).
    [CrossRef]
  28. A. P. Thorne, Spectrophysics (Chapman & Hall, New York, 1988), Chap. 13, pp. 355–358.
  29. J. Stricker, J. G. Parker, “Experimental investigations of electrical breakdown in nitrogen and oxygen induced by focused laser radiation at 1.064μ,” J. Appl. Phys. 53, 851–855 (1982).
    [CrossRef]
  30. S. V. Dresvin, Physics and Technology of Low-Temperature Plasmas (Iowa State U. Press, Ames, Iowa, 1977), Chap. 2, p. 24.

1992 (1)

L. Nanai, I. Hevesi, “Time-resolved spectral investigations of laser light induced microplasma,” Spectrochim. Acta 48A, 19–24 (1992).

1991 (2)

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

V. Majidi, J. T. Rae, J. Ratliff, “Determination of trace metals using an electrothermal atomizer by laser-induced plasma atomic emission spectrometry,” Anal. Chem. 63, 1600–1602 (1991).
[CrossRef]

1990 (5)

1987 (4)

1985 (1)

L. J. Radziemski, D. A. Cremers, T. M. Niemezyk, “Measurement of the properties of a CO2 laser induced air-plasma by double floating probe and spectroscopic techniques,” Spectrochim. Acta 40B, 517–525 (1985).

1984 (1)

1983 (2)

L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffmann, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246–1252 (1983).
[CrossRef]

D. A. Cremers, L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry,” Anal. Chem. 55, 1252–1256 (1983).
[CrossRef]

1982 (3)

H. F. Dobele, B. Ruckle, “Detection of carbon impurities in plasmas by atomic fluorescence spectroscopy,” J. Nucl. Mater. 111/112, 102–104 (1982).
[CrossRef]

H. F. Dobele, B. Ruckle, “Concentration measurements of metastable C-atoms in a carbon arc by atomic fluorescence spectroscopy using an ArF ultraviolet laser,” Plasma Phys. 24, 1419–1428(1982).
[CrossRef]

J. Stricker, J. G. Parker, “Experimental investigations of electrical breakdown in nitrogen and oxygen induced by focused laser radiation at 1.064μ,” J. Appl. Phys. 53, 851–855 (1982).
[CrossRef]

1963 (1)

H. R. Griem, “Validity of local thermal equilibrium in plasma spectroscopy,” Phys. Rev. 131, 1170–1176 (1963).
[CrossRef]

Alfano, A. J.

Ayala, N. L.

K. C. Ng, N. L. Ayala, J. B. Simeonsson, J. D. Winefordner, “Laser-induced plasma atomic emission spectrometry in liquid aerosols,” Anal. Chim. Acta (to be published).
[PubMed]

Bekefi, G.

G. Bekefi, C. Deutsch, B. Yaakobi, “Spectroscopic diagnostics of laser plasmas,” in Principles of Laser Plasmas, G. Bekefi, ed. (Wiley, New York, 1976), pp. 592–594.

Casini, M.

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

Chang, R. K.

Cremers, D. A.

J. R. Wachter, D. A. Cremers, “Determination of uranium in solution using laser-induced breakdown spectrometry,” Appl. Spectrosc. 41, 1042–1048 (1987).
[CrossRef]

D. A. Cremers, “The analysis of metals at a distance using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 572–579 (1987).
[CrossRef]

L. J. Radziemski, D. A. Cremers, T. M. Niemezyk, “Measurement of the properties of a CO2 laser induced air-plasma by double floating probe and spectroscopic techniques,” Spectrochim. Acta 40B, 517–525 (1985).

D. A. Cremers, L. J. Radziemski, T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
[CrossRef]

L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffmann, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246–1252 (1983).
[CrossRef]

D. A. Cremers, L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry,” Anal. Chem. 55, 1252–1256 (1983).
[CrossRef]

Deutsch, C.

G. Bekefi, C. Deutsch, B. Yaakobi, “Spectroscopic diagnostics of laser plasmas,” in Principles of Laser Plasmas, G. Bekefi, ed. (Wiley, New York, 1976), pp. 592–594.

Dobele, H. F.

H. F. Dobele, B. Ruckle, “Detection of carbon impurities in plasmas by atomic fluorescence spectroscopy,” J. Nucl. Mater. 111/112, 102–104 (1982).
[CrossRef]

H. F. Dobele, B. Ruckle, “Concentration measurements of metastable C-atoms in a carbon arc by atomic fluorescence spectroscopy using an ArF ultraviolet laser,” Plasma Phys. 24, 1419–1428(1982).
[CrossRef]

Dresvin, S. V.

S. V. Dresvin, Physics and Technology of Low-Temperature Plasmas (Iowa State U. Press, Ames, Iowa, 1977), Chap. 2, p. 24.

Eickmanns, J. H.

Forch, B. E.

Glennon, B. M.

W. L. Wiese, M. W. Smith, B. M. Glennon, Hydrogen through Neon, Vol. I of Atomic Transition Probabilities, NSRDS-NBS-4 (U.S. Government Printing Office, Washington, D.C., 1966).

Grant, K. J.

Griem, H. R.

H. R. Griem, “Validity of local thermal equilibrium in plasma spectroscopy,” Phys. Rev. 131, 1170–1176 (1963).
[CrossRef]

H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974), Chap. 3, pp. 170–211.

Harith, M. A.

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

Hevesi, I.

L. Nanai, I. Hevesi, “Time-resolved spectral investigations of laser light induced microplasma,” Spectrochim. Acta 48A, 19–24 (1992).

Hoffmann, N. M.

L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffmann, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246–1252 (1983).
[CrossRef]

Hsieh, W.-F.

Lochte-Holtgreven, W.

W. Lochte-Holtgreven, “Evaluation of plasma parameters,” in Plasma Diagnostics, W. Lochte-Holtgreven, ed. (Wiley, New York, 1968), pp. 147–148 and 180–182.

Locke, R. J.

Loree, T. R.

D. A. Cremers, L. J. Radziemski, T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
[CrossRef]

L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffmann, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246–1252 (1983).
[CrossRef]

Majidi, V.

V. Majidi, J. T. Rae, J. Ratliff, “Determination of trace metals using an electrothermal atomizer by laser-induced plasma atomic emission spectrometry,” Anal. Chem. 63, 1600–1602 (1991).
[CrossRef]

Meyerand, R. G.

D. C. Smith, R. G. Meyerand, “Laser radiation induced gas breakdown,” in Principles of Laser Plasmas, G. Bekefi, ed. (Wiley, New York, 1976), pp. 458–478.

Miles, B. M.

W. L. Wiese, M. W. Smith, B. M. Miles, Sodium through Calcium, Vol. II of Atomic Transition Probabilities, NSRDS-NBS-22 (U.S. Government Printing Office, Washington, D.C., 1969).

Miziolek, A. W.

Morris, J. B.

Nanai, L.

L. Nanai, I. Hevesi, “Time-resolved spectral investigations of laser light induced microplasma,” Spectrochim. Acta 48A, 19–24 (1992).

Neimax, K.

K. Neimax, W. Sdorra, “Optical emission spectrometry and laser-induced flourescence of laser produced plasmas,” Appl. Opt. 29, 5000–5006 (1990).
[CrossRef]

A. Quentmeier, W. Sdorra, K. Neimax, “Internal standardization in laser induced fluorescence spectrometry of microplasmas produced by laser ablation of solid samples,” Spectrochim. Acta 45B, 537–546 (1990).

Ng, K. C.

K. C. Ng, N. L. Ayala, J. B. Simeonsson, J. D. Winefordner, “Laser-induced plasma atomic emission spectrometry in liquid aerosols,” Anal. Chim. Acta (to be published).
[PubMed]

Niemezyk, T. M.

L. J. Radziemski, D. A. Cremers, T. M. Niemezyk, “Measurement of the properties of a CO2 laser induced air-plasma by double floating probe and spectroscopic techniques,” Spectrochim. Acta 40B, 517–525 (1985).

Palleschi, V.

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

Parker, J. G.

J. Stricker, J. G. Parker, “Experimental investigations of electrical breakdown in nitrogen and oxygen induced by focused laser radiation at 1.064μ,” J. Appl. Phys. 53, 851–855 (1982).
[CrossRef]

Paul, G. L.

Quentmeier, A.

A. Quentmeier, W. Sdorra, K. Neimax, “Internal standardization in laser induced fluorescence spectrometry of microplasmas produced by laser ablation of solid samples,” Spectrochim. Acta 45B, 537–546 (1990).

Radziemski, L. J.

L. J. Radziemski, D. A. Cremers, T. M. Niemezyk, “Measurement of the properties of a CO2 laser induced air-plasma by double floating probe and spectroscopic techniques,” Spectrochim. Acta 40B, 517–525 (1985).

D. A. Cremers, L. J. Radziemski, T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
[CrossRef]

L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffmann, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246–1252 (1983).
[CrossRef]

D. A. Cremers, L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry,” Anal. Chem. 55, 1252–1256 (1983).
[CrossRef]

Rae, J. T.

V. Majidi, J. T. Rae, J. Ratliff, “Determination of trace metals using an electrothermal atomizer by laser-induced plasma atomic emission spectrometry,” Anal. Chem. 63, 1600–1602 (1991).
[CrossRef]

Ratliff, J.

V. Majidi, J. T. Rae, J. Ratliff, “Determination of trace metals using an electrothermal atomizer by laser-induced plasma atomic emission spectrometry,” Anal. Chem. 63, 1600–1602 (1991).
[CrossRef]

Ruckle, B.

H. F. Dobele, B. Ruckle, “Detection of carbon impurities in plasmas by atomic fluorescence spectroscopy,” J. Nucl. Mater. 111/112, 102–104 (1982).
[CrossRef]

H. F. Dobele, B. Ruckle, “Concentration measurements of metastable C-atoms in a carbon arc by atomic fluorescence spectroscopy using an ArF ultraviolet laser,” Plasma Phys. 24, 1419–1428(1982).
[CrossRef]

Salvetti, A.

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

Sausa, R. C.

Sdorra, W.

A. Quentmeier, W. Sdorra, K. Neimax, “Internal standardization in laser induced fluorescence spectrometry of microplasmas produced by laser ablation of solid samples,” Spectrochim. Acta 45B, 537–546 (1990).

K. Neimax, W. Sdorra, “Optical emission spectrometry and laser-induced flourescence of laser produced plasmas,” Appl. Opt. 29, 5000–5006 (1990).
[CrossRef]

Simeonsson, J. B.

K. C. Ng, N. L. Ayala, J. B. Simeonsson, J. D. Winefordner, “Laser-induced plasma atomic emission spectrometry in liquid aerosols,” Anal. Chim. Acta (to be published).
[PubMed]

Singh, D. P.

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

Smith, D. C.

D. C. Smith, R. G. Meyerand, “Laser radiation induced gas breakdown,” in Principles of Laser Plasmas, G. Bekefi, ed. (Wiley, New York, 1976), pp. 458–478.

Smith, M. W.

W. L. Wiese, M. W. Smith, B. M. Miles, Sodium through Calcium, Vol. II of Atomic Transition Probabilities, NSRDS-NBS-22 (U.S. Government Printing Office, Washington, D.C., 1969).

W. L. Wiese, M. W. Smith, B. M. Glennon, Hydrogen through Neon, Vol. I of Atomic Transition Probabilities, NSRDS-NBS-4 (U.S. Government Printing Office, Washington, D.C., 1966).

Stricker, J.

J. Stricker, J. G. Parker, “Experimental investigations of electrical breakdown in nitrogen and oxygen induced by focused laser radiation at 1.064μ,” J. Appl. Phys. 53, 851–855 (1982).
[CrossRef]

Thorne, A. P.

A. P. Thorne, Spectrophysics (Chapman & Hall, New York, 1988), Chap. 13, pp. 355–358.

Vaselli, M.

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

Wachter, J. R.

Wiese, W. L.

W. L. Wiese, M. W. Smith, B. M. Miles, Sodium through Calcium, Vol. II of Atomic Transition Probabilities, NSRDS-NBS-22 (U.S. Government Printing Office, Washington, D.C., 1969).

W. L. Wiese, “Line broadening,” in Plasma Diagnostic Techniques, R. H. Huddlestone, S. L. Leonard, eds. (Academic, New York, 1965), pp. 269–299.

W. L. Wiese, M. W. Smith, B. M. Glennon, Hydrogen through Neon, Vol. I of Atomic Transition Probabilities, NSRDS-NBS-4 (U.S. Government Printing Office, Washington, D.C., 1966).

Winefordner, J. D.

K. C. Ng, N. L. Ayala, J. B. Simeonsson, J. D. Winefordner, “Laser-induced plasma atomic emission spectrometry in liquid aerosols,” Anal. Chim. Acta (to be published).
[PubMed]

Yaakobi, B.

G. Bekefi, C. Deutsch, B. Yaakobi, “Spectroscopic diagnostics of laser plasmas,” in Principles of Laser Plasmas, G. Bekefi, ed. (Wiley, New York, 1976), pp. 592–594.

Anal. Chem. (3)

V. Majidi, J. T. Rae, J. Ratliff, “Determination of trace metals using an electrothermal atomizer by laser-induced plasma atomic emission spectrometry,” Anal. Chem. 63, 1600–1602 (1991).
[CrossRef]

L. J. Radziemski, T. R. Loree, D. A. Cremers, N. M. Hoffmann, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246–1252 (1983).
[CrossRef]

D. A. Cremers, L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry,” Anal. Chem. 55, 1252–1256 (1983).
[CrossRef]

Appl. Opt. (4)

Appl. Spectrosc. (5)

J. Appl. Phys. (1)

J. Stricker, J. G. Parker, “Experimental investigations of electrical breakdown in nitrogen and oxygen induced by focused laser radiation at 1.064μ,” J. Appl. Phys. 53, 851–855 (1982).
[CrossRef]

J. Nucl. Mater. (1)

H. F. Dobele, B. Ruckle, “Detection of carbon impurities in plasmas by atomic fluorescence spectroscopy,” J. Nucl. Mater. 111/112, 102–104 (1982).
[CrossRef]

Laser Part. Beams (1)

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

Phys. Rev. (1)

H. R. Griem, “Validity of local thermal equilibrium in plasma spectroscopy,” Phys. Rev. 131, 1170–1176 (1963).
[CrossRef]

Plasma Phys. (1)

H. F. Dobele, B. Ruckle, “Concentration measurements of metastable C-atoms in a carbon arc by atomic fluorescence spectroscopy using an ArF ultraviolet laser,” Plasma Phys. 24, 1419–1428(1982).
[CrossRef]

Spectrochim. Acta (3)

L. Nanai, I. Hevesi, “Time-resolved spectral investigations of laser light induced microplasma,” Spectrochim. Acta 48A, 19–24 (1992).

L. J. Radziemski, D. A. Cremers, T. M. Niemezyk, “Measurement of the properties of a CO2 laser induced air-plasma by double floating probe and spectroscopic techniques,” Spectrochim. Acta 40B, 517–525 (1985).

A. Quentmeier, W. Sdorra, K. Neimax, “Internal standardization in laser induced fluorescence spectrometry of microplasmas produced by laser ablation of solid samples,” Spectrochim. Acta 45B, 537–546 (1990).

Other (10)

S. V. Dresvin, Physics and Technology of Low-Temperature Plasmas (Iowa State U. Press, Ames, Iowa, 1977), Chap. 2, p. 24.

W. Lochte-Holtgreven, “Evaluation of plasma parameters,” in Plasma Diagnostics, W. Lochte-Holtgreven, ed. (Wiley, New York, 1968), pp. 147–148 and 180–182.

W. L. Wiese, M. W. Smith, B. M. Glennon, Hydrogen through Neon, Vol. I of Atomic Transition Probabilities, NSRDS-NBS-4 (U.S. Government Printing Office, Washington, D.C., 1966).

W. L. Wiese, M. W. Smith, B. M. Miles, Sodium through Calcium, Vol. II of Atomic Transition Probabilities, NSRDS-NBS-22 (U.S. Government Printing Office, Washington, D.C., 1969).

G. Bekefi, C. Deutsch, B. Yaakobi, “Spectroscopic diagnostics of laser plasmas,” in Principles of Laser Plasmas, G. Bekefi, ed. (Wiley, New York, 1976), pp. 592–594.

A. P. Thorne, Spectrophysics (Chapman & Hall, New York, 1988), Chap. 13, pp. 355–358.

K. C. Ng, N. L. Ayala, J. B. Simeonsson, J. D. Winefordner, “Laser-induced plasma atomic emission spectrometry in liquid aerosols,” Anal. Chim. Acta (to be published).
[PubMed]

D. C. Smith, R. G. Meyerand, “Laser radiation induced gas breakdown,” in Principles of Laser Plasmas, G. Bekefi, ed. (Wiley, New York, 1976), pp. 458–478.

W. L. Wiese, “Line broadening,” in Plasma Diagnostic Techniques, R. H. Huddlestone, S. L. Leonard, eds. (Academic, New York, 1965), pp. 269–299.

H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974), Chap. 3, pp. 170–211.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Spectra showing the Stark-broadened profiles of the H Balmer alpha emission at 656.2 nm at times 0.3 μs (upper trace) and 0.9 μs (lower trace) after the laser pulse. a.u., arbitrary units.

Fig. 2
Fig. 2

Plot of microplasma electron densities as a function of time for CO (open circles), CO2 (filled circles), methanol (open inverted triangles) and chloroform (filled inverted triangles).

Fig. 3
Fig. 3

Plot of the Boltzmann excitation temperatures as a function of time, with O as the thermometric probe species for CO (open circles), CO2 (filled circles), and methanol (open inverted triangles), and with Cl as the thermometric probe for chloroform (filled inverted triangles).

Fig. 4
Fig. 4

Spectrum showing the relative intensity of C neutral and ion emissions at 247.9 nm and 251.1 nm, respectively, in CO microplasmas at 0.3 μs after the laser pulse.

Fig. 5
Fig. 5

Plot of the ionization temperatures as functions of time, with C as the thermometric probe species for CO (open circles), methanol (open inverted triangles), and chloroform (filled inverted trianges).

Fig. 6
Fig. 6

Plot of the ionization temperatures of C (open circles) and Cl (filled circles) and the excitation temperature of chlorine (open inverted triangles) in chloroform microplasmas as a function of time.

Fig. 7
Fig. 7

Plot of the ionization temperature of C (open circles) and the excitation temperature of oxygen (filled circles) in CO microplasmas as a function of time.

Tables (6)

Tables Icon

Table 1 Intensity Thresholds for Breakdown and Deposited Energies at 193 nm

Tables Icon

Table 2 Electron Density and Temperatures of CO Microplasmas

Tables Icon

Table 3 Electron Density and Temperature of CO2 Microplasmas

Tables Icon

Table 4 Electron Density and Temperatures of CH3OH Microplasmas

Tables Icon

Table 5 Electron Density and Temperatures of CHCl3 Microplasmas

Tables Icon

Table 6 Wavelengths, State Energies, and Transition Probabilities

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ion I atom = 4.83 × 10 15 N e ( g A λ ) ion ( λ g A ) atom × T ion 3 / 2 exp [ - ( V + + E ion - E atom ) k T ion ] ,
Δ T T = k T Δ E Δ R R ,
N e 1.6 × 10 18 T e ( Δ E ) 3 .
t kin [ 7.5 × 10 - 7 ( X H k T ) 3 / 2 N e ] - 1 n m n + m e ,

Metrics