Abstract

Laser Raman scattering is conducted on aqueous solutions that contain organic chemicals that include glucose, lactate, ascorbate, pyruvate, and urea. At the concentrations of interest (below 1.0 wt. %), these various metabolites are found to scatter light independently of each other, and the scattering is linearly proportional to their concentrations. Through proper subtraction of water background scattering, the spectrum that is due to metabolite scattering is obtained and the composition of the solution can be determined by fitting its Raman spectrum with a linear sum of the known pure metabolite spectra. The spectrum of rabbit aqueous humor is presented and the potential application of this analytical method, such as noninvasive glucose monitoring, is discussed.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. F. Cahill, J. S. Soeldner, G. W. Harris, R. O. Foster, “Practical development in diabetes research,” Diabetes 21, 703–712 (1972).
    [PubMed]
  2. E. de Berardinis, O. Tieri, A. Polzella, N. Iuglio, “The chemical composition of the human aqueous humor in normal and pathological conditions,” Exp. Eye Res. 4, 179–186 (1965).
    [CrossRef] [PubMed]
  3. S. Pohjola, “The glucose content of the aqueous humor in man,” Acta Ophthalmol. Suppl. 88, 38–42 (1966).
  4. B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: part I. Measurement of very small optical rotations,” Diabetes Care 5, 254–258 (1982).
    [CrossRef] [PubMed]
  5. W. F. March, B. Rabinovitch, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: part II. Animal studies and the scleral lens,” Diabetes Care 5, 259–265 (1982).
    [CrossRef] [PubMed]
  6. D. A. Gouch, “The composition and optical rotary dispersion of bovine aqueous humor,” Diabetes Care 5, 266–270 (1982).
    [CrossRef]
  7. D. R. Westenskow, D. L. Coleman, “Raman scattering for respiratory gas monitoring in the operating room: advantages, specifications, and future advances,” in Proceedings of the Biomedical Instrumentation Technology Symposium (Hanley & Belfus, Philadelphia, Pa.,1989), pp. 485–489.
  8. R. A. VanWagenen, D. R. Westenskow, R. E. Benner, D. E. Gregonis, D. L. Coleman, “Dedicated monitoring of anesthetic and respiratory gases by Raman scattering,” J. Clin. Monit. 2, 215–222 (1986).
    [CrossRef] [PubMed]
  9. N.-T. Yu, B. H. Jo, R. C. C. Chang, J. D. Huber, “Single-crystal Raman spectra of native insulin structures of insulin fibrils, glucagon fibrils, and intact calf lens,” Arch. Biochem. Biophys. 160, 614–622 (1974).
    [CrossRef] [PubMed]
  10. K. Larsson, L. Hellgren, “A study of the combined Raman and fluorescence scattering from human blood plasma,” Experientia 30, 481–483 (1974).
    [CrossRef] [PubMed]
  11. Y. Ozaki, “Medical application of Raman spectroscopy,” Appl. Spectrosc. Rev. 24, 259–312 (1988).
    [CrossRef]
  12. I. Fatt, Physiology of the Eye: An Introduction to the Vegetative Functions, (Butterworth, Boston, Mass., 1978).
  13. G. E. Walrafen, “Raman spectral studies of water structure,” J. Chem. Phys. 40, 3249–3256 (1964).
    [CrossRef]
  14. G. Cassanas, M. Morssli, E. Fabregue, L. Bardet, “Vibrational spectra of lactic acid and lactates,” J. Raman Spectrosc. 22, 409–413 (1991).
    [CrossRef]
  15. J. T. Edsall, E. L. Sagall, “Raman spectra of l-ascorbic acid, tectronic acid and related compounds,” J. Am. Chem. Soc. 65, 1312–1316 (1943).
    [CrossRef]
  16. F. R. Dollish, W. G. Fateley, F. F. Bentley, Characteristic Raman Frequencies of Organic Compounds (Wiley, New York, 1974).
  17. M. Mathlouthi, C. Luu, A. M. Meffroy-Biget, D. V. Luu, “Laser-Raman study of solute–solvent interactions in aqueous solutions of D-fructose, D-glucose, and sucrose,” Carbohydr. Res. 81, 213–223 (1980).
    [CrossRef]
  18. P. D. Vasko, J. Blackwell, J. L. Koenig, “Infrared and Raman spectroscopy of carbohydrates. Part II: normal coordinate analysis of α-D-glucose,” Carbohydr. Res. 23, 407–416 (1972).
    [CrossRef]
  19. A. Loy, K. G. Lurie, A. Ghosh, J. M. Wilson, L. C. MacGregor, F. M. Matschinsky, “Diabetes and the myoinositol paradox,” Diabetes 39, 1305–1312 (1990).
    [CrossRef] [PubMed]
  20. A. Taylor, P. F. Jacques, D. Nadler, F. Morrow, S. I. Sulsky, D. Shepard, “Relationship in humans between ascorbic acid consumption and levels of total and reduced ascorbic acid in lens, aqueous humor, and plasma,” Curr. Eye Res. 10, 751–759 (1991).
    [CrossRef] [PubMed]
  21. R. D. Stith, Department of Physiology and Biophysics, Health Sciences Center, University of Oklahoma, Oklahoma City, Okla. 73190 (personal communication, 1992).
  22. P. D. Davies, G. Duncan, P. B. Pynsent, D. L. Arber, V. A. Lucas, “Aqueous humor glucose concentration in cataract patients and its effect on the lens,” Exp. Eye Res. 39, 605–609 (1984).
    [CrossRef] [PubMed]

1991 (2)

G. Cassanas, M. Morssli, E. Fabregue, L. Bardet, “Vibrational spectra of lactic acid and lactates,” J. Raman Spectrosc. 22, 409–413 (1991).
[CrossRef]

A. Taylor, P. F. Jacques, D. Nadler, F. Morrow, S. I. Sulsky, D. Shepard, “Relationship in humans between ascorbic acid consumption and levels of total and reduced ascorbic acid in lens, aqueous humor, and plasma,” Curr. Eye Res. 10, 751–759 (1991).
[CrossRef] [PubMed]

1990 (1)

A. Loy, K. G. Lurie, A. Ghosh, J. M. Wilson, L. C. MacGregor, F. M. Matschinsky, “Diabetes and the myoinositol paradox,” Diabetes 39, 1305–1312 (1990).
[CrossRef] [PubMed]

1988 (1)

Y. Ozaki, “Medical application of Raman spectroscopy,” Appl. Spectrosc. Rev. 24, 259–312 (1988).
[CrossRef]

1986 (1)

R. A. VanWagenen, D. R. Westenskow, R. E. Benner, D. E. Gregonis, D. L. Coleman, “Dedicated monitoring of anesthetic and respiratory gases by Raman scattering,” J. Clin. Monit. 2, 215–222 (1986).
[CrossRef] [PubMed]

1984 (1)

P. D. Davies, G. Duncan, P. B. Pynsent, D. L. Arber, V. A. Lucas, “Aqueous humor glucose concentration in cataract patients and its effect on the lens,” Exp. Eye Res. 39, 605–609 (1984).
[CrossRef] [PubMed]

1982 (3)

B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: part I. Measurement of very small optical rotations,” Diabetes Care 5, 254–258 (1982).
[CrossRef] [PubMed]

W. F. March, B. Rabinovitch, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: part II. Animal studies and the scleral lens,” Diabetes Care 5, 259–265 (1982).
[CrossRef] [PubMed]

D. A. Gouch, “The composition and optical rotary dispersion of bovine aqueous humor,” Diabetes Care 5, 266–270 (1982).
[CrossRef]

1980 (1)

M. Mathlouthi, C. Luu, A. M. Meffroy-Biget, D. V. Luu, “Laser-Raman study of solute–solvent interactions in aqueous solutions of D-fructose, D-glucose, and sucrose,” Carbohydr. Res. 81, 213–223 (1980).
[CrossRef]

1974 (2)

N.-T. Yu, B. H. Jo, R. C. C. Chang, J. D. Huber, “Single-crystal Raman spectra of native insulin structures of insulin fibrils, glucagon fibrils, and intact calf lens,” Arch. Biochem. Biophys. 160, 614–622 (1974).
[CrossRef] [PubMed]

K. Larsson, L. Hellgren, “A study of the combined Raman and fluorescence scattering from human blood plasma,” Experientia 30, 481–483 (1974).
[CrossRef] [PubMed]

1972 (2)

G. F. Cahill, J. S. Soeldner, G. W. Harris, R. O. Foster, “Practical development in diabetes research,” Diabetes 21, 703–712 (1972).
[PubMed]

P. D. Vasko, J. Blackwell, J. L. Koenig, “Infrared and Raman spectroscopy of carbohydrates. Part II: normal coordinate analysis of α-D-glucose,” Carbohydr. Res. 23, 407–416 (1972).
[CrossRef]

1966 (1)

S. Pohjola, “The glucose content of the aqueous humor in man,” Acta Ophthalmol. Suppl. 88, 38–42 (1966).

1965 (1)

E. de Berardinis, O. Tieri, A. Polzella, N. Iuglio, “The chemical composition of the human aqueous humor in normal and pathological conditions,” Exp. Eye Res. 4, 179–186 (1965).
[CrossRef] [PubMed]

1964 (1)

G. E. Walrafen, “Raman spectral studies of water structure,” J. Chem. Phys. 40, 3249–3256 (1964).
[CrossRef]

1943 (1)

J. T. Edsall, E. L. Sagall, “Raman spectra of l-ascorbic acid, tectronic acid and related compounds,” J. Am. Chem. Soc. 65, 1312–1316 (1943).
[CrossRef]

Adams, R. L.

B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: part I. Measurement of very small optical rotations,” Diabetes Care 5, 254–258 (1982).
[CrossRef] [PubMed]

W. F. March, B. Rabinovitch, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: part II. Animal studies and the scleral lens,” Diabetes Care 5, 259–265 (1982).
[CrossRef] [PubMed]

Arber, D. L.

P. D. Davies, G. Duncan, P. B. Pynsent, D. L. Arber, V. A. Lucas, “Aqueous humor glucose concentration in cataract patients and its effect on the lens,” Exp. Eye Res. 39, 605–609 (1984).
[CrossRef] [PubMed]

Bardet, L.

G. Cassanas, M. Morssli, E. Fabregue, L. Bardet, “Vibrational spectra of lactic acid and lactates,” J. Raman Spectrosc. 22, 409–413 (1991).
[CrossRef]

Benner, R. E.

R. A. VanWagenen, D. R. Westenskow, R. E. Benner, D. E. Gregonis, D. L. Coleman, “Dedicated monitoring of anesthetic and respiratory gases by Raman scattering,” J. Clin. Monit. 2, 215–222 (1986).
[CrossRef] [PubMed]

Bentley, F. F.

F. R. Dollish, W. G. Fateley, F. F. Bentley, Characteristic Raman Frequencies of Organic Compounds (Wiley, New York, 1974).

Blackwell, J.

P. D. Vasko, J. Blackwell, J. L. Koenig, “Infrared and Raman spectroscopy of carbohydrates. Part II: normal coordinate analysis of α-D-glucose,” Carbohydr. Res. 23, 407–416 (1972).
[CrossRef]

Cahill, G. F.

G. F. Cahill, J. S. Soeldner, G. W. Harris, R. O. Foster, “Practical development in diabetes research,” Diabetes 21, 703–712 (1972).
[PubMed]

Cassanas, G.

G. Cassanas, M. Morssli, E. Fabregue, L. Bardet, “Vibrational spectra of lactic acid and lactates,” J. Raman Spectrosc. 22, 409–413 (1991).
[CrossRef]

Chang, R. C. C.

N.-T. Yu, B. H. Jo, R. C. C. Chang, J. D. Huber, “Single-crystal Raman spectra of native insulin structures of insulin fibrils, glucagon fibrils, and intact calf lens,” Arch. Biochem. Biophys. 160, 614–622 (1974).
[CrossRef] [PubMed]

Coleman, D. L.

R. A. VanWagenen, D. R. Westenskow, R. E. Benner, D. E. Gregonis, D. L. Coleman, “Dedicated monitoring of anesthetic and respiratory gases by Raman scattering,” J. Clin. Monit. 2, 215–222 (1986).
[CrossRef] [PubMed]

D. R. Westenskow, D. L. Coleman, “Raman scattering for respiratory gas monitoring in the operating room: advantages, specifications, and future advances,” in Proceedings of the Biomedical Instrumentation Technology Symposium (Hanley & Belfus, Philadelphia, Pa.,1989), pp. 485–489.

Davies, P. D.

P. D. Davies, G. Duncan, P. B. Pynsent, D. L. Arber, V. A. Lucas, “Aqueous humor glucose concentration in cataract patients and its effect on the lens,” Exp. Eye Res. 39, 605–609 (1984).
[CrossRef] [PubMed]

de Berardinis, E.

E. de Berardinis, O. Tieri, A. Polzella, N. Iuglio, “The chemical composition of the human aqueous humor in normal and pathological conditions,” Exp. Eye Res. 4, 179–186 (1965).
[CrossRef] [PubMed]

Dollish, F. R.

F. R. Dollish, W. G. Fateley, F. F. Bentley, Characteristic Raman Frequencies of Organic Compounds (Wiley, New York, 1974).

Duncan, G.

P. D. Davies, G. Duncan, P. B. Pynsent, D. L. Arber, V. A. Lucas, “Aqueous humor glucose concentration in cataract patients and its effect on the lens,” Exp. Eye Res. 39, 605–609 (1984).
[CrossRef] [PubMed]

Edsall, J. T.

J. T. Edsall, E. L. Sagall, “Raman spectra of l-ascorbic acid, tectronic acid and related compounds,” J. Am. Chem. Soc. 65, 1312–1316 (1943).
[CrossRef]

Fabregue, E.

G. Cassanas, M. Morssli, E. Fabregue, L. Bardet, “Vibrational spectra of lactic acid and lactates,” J. Raman Spectrosc. 22, 409–413 (1991).
[CrossRef]

Fateley, W. G.

F. R. Dollish, W. G. Fateley, F. F. Bentley, Characteristic Raman Frequencies of Organic Compounds (Wiley, New York, 1974).

Fatt, I.

I. Fatt, Physiology of the Eye: An Introduction to the Vegetative Functions, (Butterworth, Boston, Mass., 1978).

Foster, R. O.

G. F. Cahill, J. S. Soeldner, G. W. Harris, R. O. Foster, “Practical development in diabetes research,” Diabetes 21, 703–712 (1972).
[PubMed]

Ghosh, A.

A. Loy, K. G. Lurie, A. Ghosh, J. M. Wilson, L. C. MacGregor, F. M. Matschinsky, “Diabetes and the myoinositol paradox,” Diabetes 39, 1305–1312 (1990).
[CrossRef] [PubMed]

Gouch, D. A.

D. A. Gouch, “The composition and optical rotary dispersion of bovine aqueous humor,” Diabetes Care 5, 266–270 (1982).
[CrossRef]

Gregonis, D. E.

R. A. VanWagenen, D. R. Westenskow, R. E. Benner, D. E. Gregonis, D. L. Coleman, “Dedicated monitoring of anesthetic and respiratory gases by Raman scattering,” J. Clin. Monit. 2, 215–222 (1986).
[CrossRef] [PubMed]

Harris, G. W.

G. F. Cahill, J. S. Soeldner, G. W. Harris, R. O. Foster, “Practical development in diabetes research,” Diabetes 21, 703–712 (1972).
[PubMed]

Hellgren, L.

K. Larsson, L. Hellgren, “A study of the combined Raman and fluorescence scattering from human blood plasma,” Experientia 30, 481–483 (1974).
[CrossRef] [PubMed]

Huber, J. D.

N.-T. Yu, B. H. Jo, R. C. C. Chang, J. D. Huber, “Single-crystal Raman spectra of native insulin structures of insulin fibrils, glucagon fibrils, and intact calf lens,” Arch. Biochem. Biophys. 160, 614–622 (1974).
[CrossRef] [PubMed]

Iuglio, N.

E. de Berardinis, O. Tieri, A. Polzella, N. Iuglio, “The chemical composition of the human aqueous humor in normal and pathological conditions,” Exp. Eye Res. 4, 179–186 (1965).
[CrossRef] [PubMed]

Jacques, P. F.

A. Taylor, P. F. Jacques, D. Nadler, F. Morrow, S. I. Sulsky, D. Shepard, “Relationship in humans between ascorbic acid consumption and levels of total and reduced ascorbic acid in lens, aqueous humor, and plasma,” Curr. Eye Res. 10, 751–759 (1991).
[CrossRef] [PubMed]

Jo, B. H.

N.-T. Yu, B. H. Jo, R. C. C. Chang, J. D. Huber, “Single-crystal Raman spectra of native insulin structures of insulin fibrils, glucagon fibrils, and intact calf lens,” Arch. Biochem. Biophys. 160, 614–622 (1974).
[CrossRef] [PubMed]

Koenig, J. L.

P. D. Vasko, J. Blackwell, J. L. Koenig, “Infrared and Raman spectroscopy of carbohydrates. Part II: normal coordinate analysis of α-D-glucose,” Carbohydr. Res. 23, 407–416 (1972).
[CrossRef]

Larsson, K.

K. Larsson, L. Hellgren, “A study of the combined Raman and fluorescence scattering from human blood plasma,” Experientia 30, 481–483 (1974).
[CrossRef] [PubMed]

Loy, A.

A. Loy, K. G. Lurie, A. Ghosh, J. M. Wilson, L. C. MacGregor, F. M. Matschinsky, “Diabetes and the myoinositol paradox,” Diabetes 39, 1305–1312 (1990).
[CrossRef] [PubMed]

Lucas, V. A.

P. D. Davies, G. Duncan, P. B. Pynsent, D. L. Arber, V. A. Lucas, “Aqueous humor glucose concentration in cataract patients and its effect on the lens,” Exp. Eye Res. 39, 605–609 (1984).
[CrossRef] [PubMed]

Lurie, K. G.

A. Loy, K. G. Lurie, A. Ghosh, J. M. Wilson, L. C. MacGregor, F. M. Matschinsky, “Diabetes and the myoinositol paradox,” Diabetes 39, 1305–1312 (1990).
[CrossRef] [PubMed]

Luu, C.

M. Mathlouthi, C. Luu, A. M. Meffroy-Biget, D. V. Luu, “Laser-Raman study of solute–solvent interactions in aqueous solutions of D-fructose, D-glucose, and sucrose,” Carbohydr. Res. 81, 213–223 (1980).
[CrossRef]

Luu, D. V.

M. Mathlouthi, C. Luu, A. M. Meffroy-Biget, D. V. Luu, “Laser-Raman study of solute–solvent interactions in aqueous solutions of D-fructose, D-glucose, and sucrose,” Carbohydr. Res. 81, 213–223 (1980).
[CrossRef]

MacGregor, L. C.

A. Loy, K. G. Lurie, A. Ghosh, J. M. Wilson, L. C. MacGregor, F. M. Matschinsky, “Diabetes and the myoinositol paradox,” Diabetes 39, 1305–1312 (1990).
[CrossRef] [PubMed]

March, W. F.

W. F. March, B. Rabinovitch, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: part II. Animal studies and the scleral lens,” Diabetes Care 5, 259–265 (1982).
[CrossRef] [PubMed]

B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: part I. Measurement of very small optical rotations,” Diabetes Care 5, 254–258 (1982).
[CrossRef] [PubMed]

Mathlouthi, M.

M. Mathlouthi, C. Luu, A. M. Meffroy-Biget, D. V. Luu, “Laser-Raman study of solute–solvent interactions in aqueous solutions of D-fructose, D-glucose, and sucrose,” Carbohydr. Res. 81, 213–223 (1980).
[CrossRef]

Matschinsky, F. M.

A. Loy, K. G. Lurie, A. Ghosh, J. M. Wilson, L. C. MacGregor, F. M. Matschinsky, “Diabetes and the myoinositol paradox,” Diabetes 39, 1305–1312 (1990).
[CrossRef] [PubMed]

Meffroy-Biget, A. M.

M. Mathlouthi, C. Luu, A. M. Meffroy-Biget, D. V. Luu, “Laser-Raman study of solute–solvent interactions in aqueous solutions of D-fructose, D-glucose, and sucrose,” Carbohydr. Res. 81, 213–223 (1980).
[CrossRef]

Morrow, F.

A. Taylor, P. F. Jacques, D. Nadler, F. Morrow, S. I. Sulsky, D. Shepard, “Relationship in humans between ascorbic acid consumption and levels of total and reduced ascorbic acid in lens, aqueous humor, and plasma,” Curr. Eye Res. 10, 751–759 (1991).
[CrossRef] [PubMed]

Morssli, M.

G. Cassanas, M. Morssli, E. Fabregue, L. Bardet, “Vibrational spectra of lactic acid and lactates,” J. Raman Spectrosc. 22, 409–413 (1991).
[CrossRef]

Nadler, D.

A. Taylor, P. F. Jacques, D. Nadler, F. Morrow, S. I. Sulsky, D. Shepard, “Relationship in humans between ascorbic acid consumption and levels of total and reduced ascorbic acid in lens, aqueous humor, and plasma,” Curr. Eye Res. 10, 751–759 (1991).
[CrossRef] [PubMed]

Ozaki, Y.

Y. Ozaki, “Medical application of Raman spectroscopy,” Appl. Spectrosc. Rev. 24, 259–312 (1988).
[CrossRef]

Pohjola, S.

S. Pohjola, “The glucose content of the aqueous humor in man,” Acta Ophthalmol. Suppl. 88, 38–42 (1966).

Polzella, A.

E. de Berardinis, O. Tieri, A. Polzella, N. Iuglio, “The chemical composition of the human aqueous humor in normal and pathological conditions,” Exp. Eye Res. 4, 179–186 (1965).
[CrossRef] [PubMed]

Pynsent, P. B.

P. D. Davies, G. Duncan, P. B. Pynsent, D. L. Arber, V. A. Lucas, “Aqueous humor glucose concentration in cataract patients and its effect on the lens,” Exp. Eye Res. 39, 605–609 (1984).
[CrossRef] [PubMed]

Rabinovitch, B.

W. F. March, B. Rabinovitch, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: part II. Animal studies and the scleral lens,” Diabetes Care 5, 259–265 (1982).
[CrossRef] [PubMed]

B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: part I. Measurement of very small optical rotations,” Diabetes Care 5, 254–258 (1982).
[CrossRef] [PubMed]

Sagall, E. L.

J. T. Edsall, E. L. Sagall, “Raman spectra of l-ascorbic acid, tectronic acid and related compounds,” J. Am. Chem. Soc. 65, 1312–1316 (1943).
[CrossRef]

Shepard, D.

A. Taylor, P. F. Jacques, D. Nadler, F. Morrow, S. I. Sulsky, D. Shepard, “Relationship in humans between ascorbic acid consumption and levels of total and reduced ascorbic acid in lens, aqueous humor, and plasma,” Curr. Eye Res. 10, 751–759 (1991).
[CrossRef] [PubMed]

Soeldner, J. S.

G. F. Cahill, J. S. Soeldner, G. W. Harris, R. O. Foster, “Practical development in diabetes research,” Diabetes 21, 703–712 (1972).
[PubMed]

Stith, R. D.

R. D. Stith, Department of Physiology and Biophysics, Health Sciences Center, University of Oklahoma, Oklahoma City, Okla. 73190 (personal communication, 1992).

Sulsky, S. I.

A. Taylor, P. F. Jacques, D. Nadler, F. Morrow, S. I. Sulsky, D. Shepard, “Relationship in humans between ascorbic acid consumption and levels of total and reduced ascorbic acid in lens, aqueous humor, and plasma,” Curr. Eye Res. 10, 751–759 (1991).
[CrossRef] [PubMed]

Taylor, A.

A. Taylor, P. F. Jacques, D. Nadler, F. Morrow, S. I. Sulsky, D. Shepard, “Relationship in humans between ascorbic acid consumption and levels of total and reduced ascorbic acid in lens, aqueous humor, and plasma,” Curr. Eye Res. 10, 751–759 (1991).
[CrossRef] [PubMed]

Tieri, O.

E. de Berardinis, O. Tieri, A. Polzella, N. Iuglio, “The chemical composition of the human aqueous humor in normal and pathological conditions,” Exp. Eye Res. 4, 179–186 (1965).
[CrossRef] [PubMed]

VanWagenen, R. A.

R. A. VanWagenen, D. R. Westenskow, R. E. Benner, D. E. Gregonis, D. L. Coleman, “Dedicated monitoring of anesthetic and respiratory gases by Raman scattering,” J. Clin. Monit. 2, 215–222 (1986).
[CrossRef] [PubMed]

Vasko, P. D.

P. D. Vasko, J. Blackwell, J. L. Koenig, “Infrared and Raman spectroscopy of carbohydrates. Part II: normal coordinate analysis of α-D-glucose,” Carbohydr. Res. 23, 407–416 (1972).
[CrossRef]

Walrafen, G. E.

G. E. Walrafen, “Raman spectral studies of water structure,” J. Chem. Phys. 40, 3249–3256 (1964).
[CrossRef]

Westenskow, D. R.

R. A. VanWagenen, D. R. Westenskow, R. E. Benner, D. E. Gregonis, D. L. Coleman, “Dedicated monitoring of anesthetic and respiratory gases by Raman scattering,” J. Clin. Monit. 2, 215–222 (1986).
[CrossRef] [PubMed]

D. R. Westenskow, D. L. Coleman, “Raman scattering for respiratory gas monitoring in the operating room: advantages, specifications, and future advances,” in Proceedings of the Biomedical Instrumentation Technology Symposium (Hanley & Belfus, Philadelphia, Pa.,1989), pp. 485–489.

Wilson, J. M.

A. Loy, K. G. Lurie, A. Ghosh, J. M. Wilson, L. C. MacGregor, F. M. Matschinsky, “Diabetes and the myoinositol paradox,” Diabetes 39, 1305–1312 (1990).
[CrossRef] [PubMed]

Yu, N.-T.

N.-T. Yu, B. H. Jo, R. C. C. Chang, J. D. Huber, “Single-crystal Raman spectra of native insulin structures of insulin fibrils, glucagon fibrils, and intact calf lens,” Arch. Biochem. Biophys. 160, 614–622 (1974).
[CrossRef] [PubMed]

Acta Ophthalmol. Suppl. (1)

S. Pohjola, “The glucose content of the aqueous humor in man,” Acta Ophthalmol. Suppl. 88, 38–42 (1966).

Appl. Spectrosc. Rev. (1)

Y. Ozaki, “Medical application of Raman spectroscopy,” Appl. Spectrosc. Rev. 24, 259–312 (1988).
[CrossRef]

Arch. Biochem. Biophys. (1)

N.-T. Yu, B. H. Jo, R. C. C. Chang, J. D. Huber, “Single-crystal Raman spectra of native insulin structures of insulin fibrils, glucagon fibrils, and intact calf lens,” Arch. Biochem. Biophys. 160, 614–622 (1974).
[CrossRef] [PubMed]

Carbohydr. Res. (2)

M. Mathlouthi, C. Luu, A. M. Meffroy-Biget, D. V. Luu, “Laser-Raman study of solute–solvent interactions in aqueous solutions of D-fructose, D-glucose, and sucrose,” Carbohydr. Res. 81, 213–223 (1980).
[CrossRef]

P. D. Vasko, J. Blackwell, J. L. Koenig, “Infrared and Raman spectroscopy of carbohydrates. Part II: normal coordinate analysis of α-D-glucose,” Carbohydr. Res. 23, 407–416 (1972).
[CrossRef]

Curr. Eye Res. (1)

A. Taylor, P. F. Jacques, D. Nadler, F. Morrow, S. I. Sulsky, D. Shepard, “Relationship in humans between ascorbic acid consumption and levels of total and reduced ascorbic acid in lens, aqueous humor, and plasma,” Curr. Eye Res. 10, 751–759 (1991).
[CrossRef] [PubMed]

Diabetes (2)

A. Loy, K. G. Lurie, A. Ghosh, J. M. Wilson, L. C. MacGregor, F. M. Matschinsky, “Diabetes and the myoinositol paradox,” Diabetes 39, 1305–1312 (1990).
[CrossRef] [PubMed]

G. F. Cahill, J. S. Soeldner, G. W. Harris, R. O. Foster, “Practical development in diabetes research,” Diabetes 21, 703–712 (1972).
[PubMed]

Diabetes Care (3)

B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: part I. Measurement of very small optical rotations,” Diabetes Care 5, 254–258 (1982).
[CrossRef] [PubMed]

W. F. March, B. Rabinovitch, R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: part II. Animal studies and the scleral lens,” Diabetes Care 5, 259–265 (1982).
[CrossRef] [PubMed]

D. A. Gouch, “The composition and optical rotary dispersion of bovine aqueous humor,” Diabetes Care 5, 266–270 (1982).
[CrossRef]

Exp. Eye Res. (2)

E. de Berardinis, O. Tieri, A. Polzella, N. Iuglio, “The chemical composition of the human aqueous humor in normal and pathological conditions,” Exp. Eye Res. 4, 179–186 (1965).
[CrossRef] [PubMed]

P. D. Davies, G. Duncan, P. B. Pynsent, D. L. Arber, V. A. Lucas, “Aqueous humor glucose concentration in cataract patients and its effect on the lens,” Exp. Eye Res. 39, 605–609 (1984).
[CrossRef] [PubMed]

Experientia (1)

K. Larsson, L. Hellgren, “A study of the combined Raman and fluorescence scattering from human blood plasma,” Experientia 30, 481–483 (1974).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

J. T. Edsall, E. L. Sagall, “Raman spectra of l-ascorbic acid, tectronic acid and related compounds,” J. Am. Chem. Soc. 65, 1312–1316 (1943).
[CrossRef]

J. Chem. Phys. (1)

G. E. Walrafen, “Raman spectral studies of water structure,” J. Chem. Phys. 40, 3249–3256 (1964).
[CrossRef]

J. Clin. Monit. (1)

R. A. VanWagenen, D. R. Westenskow, R. E. Benner, D. E. Gregonis, D. L. Coleman, “Dedicated monitoring of anesthetic and respiratory gases by Raman scattering,” J. Clin. Monit. 2, 215–222 (1986).
[CrossRef] [PubMed]

J. Raman Spectrosc. (1)

G. Cassanas, M. Morssli, E. Fabregue, L. Bardet, “Vibrational spectra of lactic acid and lactates,” J. Raman Spectrosc. 22, 409–413 (1991).
[CrossRef]

Other (4)

I. Fatt, Physiology of the Eye: An Introduction to the Vegetative Functions, (Butterworth, Boston, Mass., 1978).

F. R. Dollish, W. G. Fateley, F. F. Bentley, Characteristic Raman Frequencies of Organic Compounds (Wiley, New York, 1974).

D. R. Westenskow, D. L. Coleman, “Raman scattering for respiratory gas monitoring in the operating room: advantages, specifications, and future advances,” in Proceedings of the Biomedical Instrumentation Technology Symposium (Hanley & Belfus, Philadelphia, Pa.,1989), pp. 485–489.

R. D. Stith, Department of Physiology and Biophysics, Health Sciences Center, University of Oklahoma, Oklahoma City, Okla. 73190 (personal communication, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Raman spectrum showing the glucose doublet after water background subtraction. The original spectrum of the 5% glucose/water solution is normalized at the water triplet and superposed on the pure water spectrum in the inset.

Fig. 2
Fig. 2

Integrated area of glucose doublet as a function of glucose concentration (wt. %). Low concentration data are shown enlarged in the inset. The best fit is given as y = 10.54x + 0.0584x2.

Fig. 3
Fig. 3

Spectra of 1% aqueous solutions of glucose, lactate, ascorbate, and urea after water background subtraction. All spectra were obtained from the corresponding pure 10% solutions for better signal-to-noise ratios.

Fig. 4
Fig. 4

Spectra of the solution that contains 2% glucose, 0.5% lactate, 0.2% ascorbate, 0.3% urea, and 0.2% pyruvate with the water background subtracted. The experimental spectrum is shown as dots and the calculated spectrum is shown as a solid curve.

Fig. 5
Fig. 5

Spectra of aqueous humor solution from rabbit eye with water background subtracted. Major features of the spectra can be accounted for by the signature peaks of urea (U), lactate (L), ascorbate (A), glucose (G), and combinations of them. The peak at 1640 cm−1 is due to incomplete water subtraction and the cause of the peak at 1380 cm−1 is unclear.

Metrics