Abstract

A powerful molecular surface analysis technique for the analysis of complex materials, such as polymer/additive systems, consists of laser desorption of surface molecules and subsequent ionization of these gas-phase molecules with resonant or nonresonant laser ionization. These molecular ions are subsequently detected by Fourier-transform mass spectrometry or time-of-flight mass spectrometry. We show that different wavelengths for the postionization step permit selectivity that provides important additional information on the chemical makeup of these complex materials. Near-UV wavelengths selectively ionize aromatic polymer additives, far-UV wavelengths photoionize other nonaromatic species; and vacuum-UV wavelengths provide access to all the desorbed species. In addition to these applied results, we study many fundamental issues of laser desorption, such as desorption thresholds, velocity distributions, postionization wavelength selectivity, etc. The Fourier-transform mass spectrometer and time-of-flight mass spectrometer are discussed in detail.

© 1993 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-photon laser ionization time-of-flight mass spectroscopy detection in molecular-beam epitaxy: application to As4, As2, and Ga

Paul G. Strupp, April L. Alstrin, Russell V. Smilgys, and Stephen R. Leone
Appl. Opt. 32(6) 842-846 (1993)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription