Abstract

A tunable 1.7-μm cw F2+-center laser spectrometer system that is continuously tunable from 1.43 to 1.78 μm in wavelength and has a spectral linewidth (FWHM) of 0.07 cm−1 is developed. This system is used to measure the 2–0 rotational-vibrational absorption line profiles of hydrogen chloride (HCl) at high temperatures, the Boltzmann thermal equilibrium temperature, and to determine the extent of potential interference or overlap of the HCl lines with those that are due to hot water vapor. As a demonstration of the utility of the laser spectrometer system, it is also used to measure the spectra of methane (CH4) and ethylene (C2H4) near 1.65 μm, and is routed through a fiber-optic cable to a remote site to detect a CH4 plume.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Zander, “Recent observations of HF and HCl in the upper atmosphere,” Geophys. Res. Lett. 8, 413–416 (1981).
    [CrossRef]
  2. M. J. Molina, F. S. Rowland, “Stratospheric sink for chlorofluoromethanes: chlorine atom catalyzed destruction of ozone,” Nature (London) 249, 810–812 (1974).
    [CrossRef]
  3. G. Smolinsky, R. P. Chang, T. M. Mayer, “Plasma etching of III-V semiconductor materials and their oxides,” J. Vac. Sci. Technol. 18, 12–16 (1981).
    [CrossRef]
  4. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barge, N. Husson, C. P. Rinsland, M. A. H. Smith, “The hitran database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  5. L. S. Rothman, A. Goldman, J. R. Gillis, R. H. Tipping, L. R. Brown, J. S. Margolis, A. G. Maki, L. D. G. Young, “AFGL trace gas compilation: 1980 version,” Appl. Opt. 20, 1323–1328 (1981).
    [CrossRef] [PubMed]
  6. R. A. Toth, R. H. Hunt, E. K. Plyler, “Line strengths, linewidths, and dipole moment function for HCl,” J. Mol. Spectrosc. 35, 110–126 (1970).
    [CrossRef]
  7. J. H. Jaffe, S. Kimel, M. A. Hirshfeld, “Refraction spectrum in gases in the infrared intensities and widths of lines in the 2–0 band of HCl,” Can J. Phys. 40, 113–121 (1962).
    [CrossRef]
  8. W. S. Benedict, R. Herman, G. E. Moore, “Infrared line and band strengths and dipole moment function in HCl and DCl,” J. Chem. Phys. 26, 1671–1677 (1957).
    [CrossRef]
  9. H. Goldring, W. Benesch, “Widths of HCl overtone lines at various temperatures,” Can. J. Phys. 40, 1801–1813 (1962).
    [CrossRef]
  10. A. S. Pine, A. Fried, J. W. Elkins, “Spectral intensities in the fundamental bands of HF and HCl,” J. Mol. Spectrosc. 109, 30–45 (1985).
    [CrossRef]
  11. A. C. Stanton, J. A. Silver, “Measurements in the HCl 3–0 band using a near-IR InGaAsP diode laser,” Appl. Opt. 27, 5009–5015 (1988).
    [CrossRef] [PubMed]
  12. J. Gelfand, M. Zughul, H. Rabitz, C. J. Han, “Absorption intensities for the 4–0 through 7–0 overtone bands of HCl,” J. Quantum. Radiat. Transfer 26, 303–305 (1981).
    [CrossRef]
  13. K. V. Reddy, “High resolution measurement of HCl overtone vibration-rotation bands by intracavity dye laser techniques,” J. Mol. Spectrosc. 82, 127–137 (1980).
    [CrossRef]
  14. C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared laser absorption: theory and applications,” in Laser Remote Chemical Analysis, R. M. Measures, ed., Vol. 94 of Chemical Analysis Series (Wiley, New York, 1988), pp. 163–272.
  15. B. P. Scott, N. Djeu, “Efficient Raman energy extraction in HD,” Appl. Opt. 29, 2217–2218 (1990).
    [CrossRef] [PubMed]
  16. V. Phomsakha, B. P. Scott, N. Djeu, “Joule level tunable single-frequency Nd:glass laser,” Appl. Opt. 31, 698–699 (1992).
    [CrossRef] [PubMed]
  17. C. H. Townes, A. L. Schawlow, Microwave Spectroscopy, 1st ed. (McGraw-Hill, New York, 1955), Chap. 13, p. 336.
  18. M. Vaidyananthan, D. K. Killinger, “Absorption strength and pressure broadened linewidth measurements of the 1.7 μm (2–0) band of HCl at high temperatures,” J. Quantum. Spectrosc. Radiat. Transfer (to be published).
  19. M. Vaidyanathan, “Absorption spectra and pressure broadening measurements of high temperature HCl using a tunable 1.7 μm laser spectrometer,” Ph.D. dissertation (University of South Florida, Tampa, Fl., 1992).
  20. R. T. Loda, A. E. Schindler, Science and Technology Division, Institute for Defense Analyses, Alexandria, Va. 22311 (personal communication, 1990).
  21. K. Chan, H. Ito, H. Inaba, “Remote sensing system for near-infrared differential absorption of CH4 gas using low-loss optical fiber link,” Appl. Opt. 23, 3415–3420 (1984).
    [CrossRef] [PubMed]
  22. K. Chan, H. Ito, H. Inaba, “All-optical fiber-based remote sensing system for near infrared absorption of low-level CH4 gas,” IEEE J. Lightwave Technol. 23, 3415–3420 (1987).
  23. M. C. Alarcon, H. Ito, H. Inaba, “All-optical remote sensing of city gas through CH4 gas absorption employing a low-loss optical fiber link and an InGaAsP light-emitting diode in the near-infrared region,” Appl. Phys. B 43, 79–83 (1987).
    [CrossRef]
  24. H. Inaba, K. Chan, “Development and performance of a new high-resolution spectrometer using InGaAsP and InGaAs light emitting diodes in the near IR,” Infrared Phys. 29, 551–560 (1989).
    [CrossRef]

1992 (1)

1990 (1)

1989 (1)

H. Inaba, K. Chan, “Development and performance of a new high-resolution spectrometer using InGaAsP and InGaAs light emitting diodes in the near IR,” Infrared Phys. 29, 551–560 (1989).
[CrossRef]

1988 (1)

1987 (3)

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barge, N. Husson, C. P. Rinsland, M. A. H. Smith, “The hitran database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

K. Chan, H. Ito, H. Inaba, “All-optical fiber-based remote sensing system for near infrared absorption of low-level CH4 gas,” IEEE J. Lightwave Technol. 23, 3415–3420 (1987).

M. C. Alarcon, H. Ito, H. Inaba, “All-optical remote sensing of city gas through CH4 gas absorption employing a low-loss optical fiber link and an InGaAsP light-emitting diode in the near-infrared region,” Appl. Phys. B 43, 79–83 (1987).
[CrossRef]

1985 (1)

A. S. Pine, A. Fried, J. W. Elkins, “Spectral intensities in the fundamental bands of HF and HCl,” J. Mol. Spectrosc. 109, 30–45 (1985).
[CrossRef]

1984 (1)

1981 (4)

L. S. Rothman, A. Goldman, J. R. Gillis, R. H. Tipping, L. R. Brown, J. S. Margolis, A. G. Maki, L. D. G. Young, “AFGL trace gas compilation: 1980 version,” Appl. Opt. 20, 1323–1328 (1981).
[CrossRef] [PubMed]

J. Gelfand, M. Zughul, H. Rabitz, C. J. Han, “Absorption intensities for the 4–0 through 7–0 overtone bands of HCl,” J. Quantum. Radiat. Transfer 26, 303–305 (1981).
[CrossRef]

R. Zander, “Recent observations of HF and HCl in the upper atmosphere,” Geophys. Res. Lett. 8, 413–416 (1981).
[CrossRef]

G. Smolinsky, R. P. Chang, T. M. Mayer, “Plasma etching of III-V semiconductor materials and their oxides,” J. Vac. Sci. Technol. 18, 12–16 (1981).
[CrossRef]

1980 (1)

K. V. Reddy, “High resolution measurement of HCl overtone vibration-rotation bands by intracavity dye laser techniques,” J. Mol. Spectrosc. 82, 127–137 (1980).
[CrossRef]

1974 (1)

M. J. Molina, F. S. Rowland, “Stratospheric sink for chlorofluoromethanes: chlorine atom catalyzed destruction of ozone,” Nature (London) 249, 810–812 (1974).
[CrossRef]

1970 (1)

R. A. Toth, R. H. Hunt, E. K. Plyler, “Line strengths, linewidths, and dipole moment function for HCl,” J. Mol. Spectrosc. 35, 110–126 (1970).
[CrossRef]

1962 (2)

J. H. Jaffe, S. Kimel, M. A. Hirshfeld, “Refraction spectrum in gases in the infrared intensities and widths of lines in the 2–0 band of HCl,” Can J. Phys. 40, 113–121 (1962).
[CrossRef]

H. Goldring, W. Benesch, “Widths of HCl overtone lines at various temperatures,” Can. J. Phys. 40, 1801–1813 (1962).
[CrossRef]

1957 (1)

W. S. Benedict, R. Herman, G. E. Moore, “Infrared line and band strengths and dipole moment function in HCl and DCl,” J. Chem. Phys. 26, 1671–1677 (1957).
[CrossRef]

Alarcon, M. C.

M. C. Alarcon, H. Ito, H. Inaba, “All-optical remote sensing of city gas through CH4 gas absorption employing a low-loss optical fiber link and an InGaAsP light-emitting diode in the near-infrared region,” Appl. Phys. B 43, 79–83 (1987).
[CrossRef]

Barge, A.

Benedict, W. S.

W. S. Benedict, R. Herman, G. E. Moore, “Infrared line and band strengths and dipole moment function in HCl and DCl,” J. Chem. Phys. 26, 1671–1677 (1957).
[CrossRef]

Benesch, W.

H. Goldring, W. Benesch, “Widths of HCl overtone lines at various temperatures,” Can. J. Phys. 40, 1801–1813 (1962).
[CrossRef]

Brown, L. R.

Camy-Peyret, C.

Chan, K.

H. Inaba, K. Chan, “Development and performance of a new high-resolution spectrometer using InGaAsP and InGaAs light emitting diodes in the near IR,” Infrared Phys. 29, 551–560 (1989).
[CrossRef]

K. Chan, H. Ito, H. Inaba, “All-optical fiber-based remote sensing system for near infrared absorption of low-level CH4 gas,” IEEE J. Lightwave Technol. 23, 3415–3420 (1987).

K. Chan, H. Ito, H. Inaba, “Remote sensing system for near-infrared differential absorption of CH4 gas using low-loss optical fiber link,” Appl. Opt. 23, 3415–3420 (1984).
[CrossRef] [PubMed]

Chang, R. P.

G. Smolinsky, R. P. Chang, T. M. Mayer, “Plasma etching of III-V semiconductor materials and their oxides,” J. Vac. Sci. Technol. 18, 12–16 (1981).
[CrossRef]

Djeu, N.

Elkins, J. W.

A. S. Pine, A. Fried, J. W. Elkins, “Spectral intensities in the fundamental bands of HF and HCl,” J. Mol. Spectrosc. 109, 30–45 (1985).
[CrossRef]

Flaud, J. M.

Fried, A.

A. S. Pine, A. Fried, J. W. Elkins, “Spectral intensities in the fundamental bands of HF and HCl,” J. Mol. Spectrosc. 109, 30–45 (1985).
[CrossRef]

Gamache, R. R.

Gelfand, J.

J. Gelfand, M. Zughul, H. Rabitz, C. J. Han, “Absorption intensities for the 4–0 through 7–0 overtone bands of HCl,” J. Quantum. Radiat. Transfer 26, 303–305 (1981).
[CrossRef]

Gillis, J. R.

Goldman, A.

Goldring, H.

H. Goldring, W. Benesch, “Widths of HCl overtone lines at various temperatures,” Can. J. Phys. 40, 1801–1813 (1962).
[CrossRef]

Han, C. J.

J. Gelfand, M. Zughul, H. Rabitz, C. J. Han, “Absorption intensities for the 4–0 through 7–0 overtone bands of HCl,” J. Quantum. Radiat. Transfer 26, 303–305 (1981).
[CrossRef]

Herman, R.

W. S. Benedict, R. Herman, G. E. Moore, “Infrared line and band strengths and dipole moment function in HCl and DCl,” J. Chem. Phys. 26, 1671–1677 (1957).
[CrossRef]

Hinkley, E. D.

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared laser absorption: theory and applications,” in Laser Remote Chemical Analysis, R. M. Measures, ed., Vol. 94 of Chemical Analysis Series (Wiley, New York, 1988), pp. 163–272.

Hirshfeld, M. A.

J. H. Jaffe, S. Kimel, M. A. Hirshfeld, “Refraction spectrum in gases in the infrared intensities and widths of lines in the 2–0 band of HCl,” Can J. Phys. 40, 113–121 (1962).
[CrossRef]

Hunt, R. H.

R. A. Toth, R. H. Hunt, E. K. Plyler, “Line strengths, linewidths, and dipole moment function for HCl,” J. Mol. Spectrosc. 35, 110–126 (1970).
[CrossRef]

Husson, N.

Inaba, H.

H. Inaba, K. Chan, “Development and performance of a new high-resolution spectrometer using InGaAsP and InGaAs light emitting diodes in the near IR,” Infrared Phys. 29, 551–560 (1989).
[CrossRef]

K. Chan, H. Ito, H. Inaba, “All-optical fiber-based remote sensing system for near infrared absorption of low-level CH4 gas,” IEEE J. Lightwave Technol. 23, 3415–3420 (1987).

M. C. Alarcon, H. Ito, H. Inaba, “All-optical remote sensing of city gas through CH4 gas absorption employing a low-loss optical fiber link and an InGaAsP light-emitting diode in the near-infrared region,” Appl. Phys. B 43, 79–83 (1987).
[CrossRef]

K. Chan, H. Ito, H. Inaba, “Remote sensing system for near-infrared differential absorption of CH4 gas using low-loss optical fiber link,” Appl. Opt. 23, 3415–3420 (1984).
[CrossRef] [PubMed]

Ito, H.

M. C. Alarcon, H. Ito, H. Inaba, “All-optical remote sensing of city gas through CH4 gas absorption employing a low-loss optical fiber link and an InGaAsP light-emitting diode in the near-infrared region,” Appl. Phys. B 43, 79–83 (1987).
[CrossRef]

K. Chan, H. Ito, H. Inaba, “All-optical fiber-based remote sensing system for near infrared absorption of low-level CH4 gas,” IEEE J. Lightwave Technol. 23, 3415–3420 (1987).

K. Chan, H. Ito, H. Inaba, “Remote sensing system for near-infrared differential absorption of CH4 gas using low-loss optical fiber link,” Appl. Opt. 23, 3415–3420 (1984).
[CrossRef] [PubMed]

Jaffe, J. H.

J. H. Jaffe, S. Kimel, M. A. Hirshfeld, “Refraction spectrum in gases in the infrared intensities and widths of lines in the 2–0 band of HCl,” Can J. Phys. 40, 113–121 (1962).
[CrossRef]

Killinger, D. K.

M. Vaidyananthan, D. K. Killinger, “Absorption strength and pressure broadened linewidth measurements of the 1.7 μm (2–0) band of HCl at high temperatures,” J. Quantum. Spectrosc. Radiat. Transfer (to be published).

Kimel, S.

J. H. Jaffe, S. Kimel, M. A. Hirshfeld, “Refraction spectrum in gases in the infrared intensities and widths of lines in the 2–0 band of HCl,” Can J. Phys. 40, 113–121 (1962).
[CrossRef]

Loda, R. T.

R. T. Loda, A. E. Schindler, Science and Technology Division, Institute for Defense Analyses, Alexandria, Va. 22311 (personal communication, 1990).

Maki, A. G.

Margolis, J. S.

Mayer, T. M.

G. Smolinsky, R. P. Chang, T. M. Mayer, “Plasma etching of III-V semiconductor materials and their oxides,” J. Vac. Sci. Technol. 18, 12–16 (1981).
[CrossRef]

Menzies, R. T.

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared laser absorption: theory and applications,” in Laser Remote Chemical Analysis, R. M. Measures, ed., Vol. 94 of Chemical Analysis Series (Wiley, New York, 1988), pp. 163–272.

Molina, M. J.

M. J. Molina, F. S. Rowland, “Stratospheric sink for chlorofluoromethanes: chlorine atom catalyzed destruction of ozone,” Nature (London) 249, 810–812 (1974).
[CrossRef]

Moore, G. E.

W. S. Benedict, R. Herman, G. E. Moore, “Infrared line and band strengths and dipole moment function in HCl and DCl,” J. Chem. Phys. 26, 1671–1677 (1957).
[CrossRef]

Phomsakha, V.

Pickett, H. M.

Pine, A. S.

A. S. Pine, A. Fried, J. W. Elkins, “Spectral intensities in the fundamental bands of HF and HCl,” J. Mol. Spectrosc. 109, 30–45 (1985).
[CrossRef]

Plyler, E. K.

R. A. Toth, R. H. Hunt, E. K. Plyler, “Line strengths, linewidths, and dipole moment function for HCl,” J. Mol. Spectrosc. 35, 110–126 (1970).
[CrossRef]

Poynter, R. L.

Rabitz, H.

J. Gelfand, M. Zughul, H. Rabitz, C. J. Han, “Absorption intensities for the 4–0 through 7–0 overtone bands of HCl,” J. Quantum. Radiat. Transfer 26, 303–305 (1981).
[CrossRef]

Reddy, K. V.

K. V. Reddy, “High resolution measurement of HCl overtone vibration-rotation bands by intracavity dye laser techniques,” J. Mol. Spectrosc. 82, 127–137 (1980).
[CrossRef]

Rinsland, C. P.

Rothman, L. S.

Rowland, F. S.

M. J. Molina, F. S. Rowland, “Stratospheric sink for chlorofluoromethanes: chlorine atom catalyzed destruction of ozone,” Nature (London) 249, 810–812 (1974).
[CrossRef]

Schawlow, A. L.

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy, 1st ed. (McGraw-Hill, New York, 1955), Chap. 13, p. 336.

Schindler, A. E.

R. T. Loda, A. E. Schindler, Science and Technology Division, Institute for Defense Analyses, Alexandria, Va. 22311 (personal communication, 1990).

Scott, B. P.

Silver, J. A.

Smith, M. A. H.

Smolinsky, G.

G. Smolinsky, R. P. Chang, T. M. Mayer, “Plasma etching of III-V semiconductor materials and their oxides,” J. Vac. Sci. Technol. 18, 12–16 (1981).
[CrossRef]

Stanton, A. C.

Tipping, R. H.

Toth, R. A.

Townes, C. H.

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy, 1st ed. (McGraw-Hill, New York, 1955), Chap. 13, p. 336.

Vaidyananthan, M.

M. Vaidyananthan, D. K. Killinger, “Absorption strength and pressure broadened linewidth measurements of the 1.7 μm (2–0) band of HCl at high temperatures,” J. Quantum. Spectrosc. Radiat. Transfer (to be published).

Vaidyanathan, M.

M. Vaidyanathan, “Absorption spectra and pressure broadening measurements of high temperature HCl using a tunable 1.7 μm laser spectrometer,” Ph.D. dissertation (University of South Florida, Tampa, Fl., 1992).

Webster, C. R.

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared laser absorption: theory and applications,” in Laser Remote Chemical Analysis, R. M. Measures, ed., Vol. 94 of Chemical Analysis Series (Wiley, New York, 1988), pp. 163–272.

Young, L. D. G.

Zander, R.

R. Zander, “Recent observations of HF and HCl in the upper atmosphere,” Geophys. Res. Lett. 8, 413–416 (1981).
[CrossRef]

Zughul, M.

J. Gelfand, M. Zughul, H. Rabitz, C. J. Han, “Absorption intensities for the 4–0 through 7–0 overtone bands of HCl,” J. Quantum. Radiat. Transfer 26, 303–305 (1981).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (1)

M. C. Alarcon, H. Ito, H. Inaba, “All-optical remote sensing of city gas through CH4 gas absorption employing a low-loss optical fiber link and an InGaAsP light-emitting diode in the near-infrared region,” Appl. Phys. B 43, 79–83 (1987).
[CrossRef]

Can J. Phys. (1)

J. H. Jaffe, S. Kimel, M. A. Hirshfeld, “Refraction spectrum in gases in the infrared intensities and widths of lines in the 2–0 band of HCl,” Can J. Phys. 40, 113–121 (1962).
[CrossRef]

Can. J. Phys. (1)

H. Goldring, W. Benesch, “Widths of HCl overtone lines at various temperatures,” Can. J. Phys. 40, 1801–1813 (1962).
[CrossRef]

Geophys. Res. Lett. (1)

R. Zander, “Recent observations of HF and HCl in the upper atmosphere,” Geophys. Res. Lett. 8, 413–416 (1981).
[CrossRef]

IEEE J. Lightwave Technol. (1)

K. Chan, H. Ito, H. Inaba, “All-optical fiber-based remote sensing system for near infrared absorption of low-level CH4 gas,” IEEE J. Lightwave Technol. 23, 3415–3420 (1987).

Infrared Phys. (1)

H. Inaba, K. Chan, “Development and performance of a new high-resolution spectrometer using InGaAsP and InGaAs light emitting diodes in the near IR,” Infrared Phys. 29, 551–560 (1989).
[CrossRef]

J. Chem. Phys. (1)

W. S. Benedict, R. Herman, G. E. Moore, “Infrared line and band strengths and dipole moment function in HCl and DCl,” J. Chem. Phys. 26, 1671–1677 (1957).
[CrossRef]

J. Mol. Spectrosc. (3)

A. S. Pine, A. Fried, J. W. Elkins, “Spectral intensities in the fundamental bands of HF and HCl,” J. Mol. Spectrosc. 109, 30–45 (1985).
[CrossRef]

R. A. Toth, R. H. Hunt, E. K. Plyler, “Line strengths, linewidths, and dipole moment function for HCl,” J. Mol. Spectrosc. 35, 110–126 (1970).
[CrossRef]

K. V. Reddy, “High resolution measurement of HCl overtone vibration-rotation bands by intracavity dye laser techniques,” J. Mol. Spectrosc. 82, 127–137 (1980).
[CrossRef]

J. Quantum. Radiat. Transfer (1)

J. Gelfand, M. Zughul, H. Rabitz, C. J. Han, “Absorption intensities for the 4–0 through 7–0 overtone bands of HCl,” J. Quantum. Radiat. Transfer 26, 303–305 (1981).
[CrossRef]

J. Vac. Sci. Technol. (1)

G. Smolinsky, R. P. Chang, T. M. Mayer, “Plasma etching of III-V semiconductor materials and their oxides,” J. Vac. Sci. Technol. 18, 12–16 (1981).
[CrossRef]

Nature (London) (1)

M. J. Molina, F. S. Rowland, “Stratospheric sink for chlorofluoromethanes: chlorine atom catalyzed destruction of ozone,” Nature (London) 249, 810–812 (1974).
[CrossRef]

Other (5)

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared laser absorption: theory and applications,” in Laser Remote Chemical Analysis, R. M. Measures, ed., Vol. 94 of Chemical Analysis Series (Wiley, New York, 1988), pp. 163–272.

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy, 1st ed. (McGraw-Hill, New York, 1955), Chap. 13, p. 336.

M. Vaidyananthan, D. K. Killinger, “Absorption strength and pressure broadened linewidth measurements of the 1.7 μm (2–0) band of HCl at high temperatures,” J. Quantum. Spectrosc. Radiat. Transfer (to be published).

M. Vaidyanathan, “Absorption spectra and pressure broadening measurements of high temperature HCl using a tunable 1.7 μm laser spectrometer,” Ph.D. dissertation (University of South Florida, Tampa, Fl., 1992).

R. T. Loda, A. E. Schindler, Science and Technology Division, Institute for Defense Analyses, Alexandria, Va. 22311 (personal communication, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the F2+-center laser spectrometer system.

Fig. 2
Fig. 2

Plot of transmitted laser intensity through a Fabry–Perot interferometer as laser wavelength was tuned. The laser spectral line shape is shown to fit a Gaussian profile.

Fig. 3
Fig. 3

Laser absorption scan at moderate resolution (0.3 cm−1) of HCl lines near 1.73 μm at a temperature of 296 K.

Fig. 4
Fig. 4

Spectral scan at high resolution (0.07 cm−1) of the R(5) transition of HCl35 at T = 296 K showing the modulation of the base line. The Fabry–Perot frequency reference markers are also shown.

Fig. 5
Fig. 5

Spectral line shape of measured R(6) line at T = 296 K after subtracting base-line modulation. The spectral line profile shows an excellent fit to a Lorentzian profile.

Fig. 6
Fig. 6

Plot of the logarithm of the line intensity as a function of lower state energy of HCl. The slope of the curve indicates the temperature of the Boltzmann population distribution.

Fig. 7
Fig. 7

Plot of the logarithm of the line intensity versus lower state energy for HCl gas in a 60-Hz plasma ([HCl] = 20 Torr, 3 × 30.8-cm path length).

Fig. 8
Fig. 8

Plot of the logarithm of the line intensity versus lower state energy for HCl gas in a uniform microwave discharge ([HCl] = 30 Torr, 13-cm path length).

Fig. 9
Fig. 9

Laser absorption scan of HCl ([HCl] = 760 Torr, T = 296 K, 10.2-cm path length) and hot H2O (635-Torr H2O in 1-atm air, T = 296 K; 30.5-cm path length) near 1.74 μm; moderate-resolution (0.3-cm−1) scan.

Fig. 10
Fig. 10

Spectral scan of CH4 taken near 1.66 μm at moderate resolution (0.3 cm−1) ([CH4] = 300 Torr, T = 296 K, cell length = 31.1 cm).

Fig. 11
Fig. 11

Spectral scan of C2H4 taken near 1.63 μm at moderate resolution (0.3 cm−1) 200 Torr, T = 296 K, cell ([C2H4] = length = 31.1 cm).

Fig. 12
Fig. 12

Schematic of the fiber-optic coupled detection of CH4 in the atmosphere.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T ( ν ¯ ) = exp [ - α ( ν ¯ ) P z ] ,
α ( ν ¯ ) = S N g M ( ν ¯ ) ,
g M ( ν ¯ ) 1 π { ( γ P / 2 ) [ ( ν ¯ - ν ¯ 0 ) 2 + ( γ P / 2 ) 2 ] } ,
γ V 2 γ P 2 + γ L 2 ,
S = 8 π 3 3 h c ν ¯ I a Q int exp [ - h c F v ( J ) k T ] R 2 ,
ln ( S meas ν ¯ R theory 2 ) = const . - h c F v ( J ) k T .

Metrics