Abstract

The transmission of 100-fs ultrafast laser pulses through biological tissues was measured by using femtosecond and picosecond time-resolved detection techniques. The broadening of transmitted pulses was found to increase as the thickness of the biological tissue increases. The absence of a distinct ballistic pulse transmitted through a relatively thin tissue is in sharp contrast with the pulse transmission through a random medium of discrete scatterers. Because of the continuous variation of the dielectric constant in tissue, the photons undergo scattering through the tissue, travel in various small zigzag least optical paths, and form a broadened early-arriving portion of the transmitted pulse. Even in the absence of a well-defined ballistic pulse, we can image an opaque object hidden inside a tissue as thick as 6.5 mm with submillimeter resolution by selecting the early-arriving portion of the transmitted pulse.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lax, V. Nayaranamurti, R. C. Fulton, “Classical diffusive photon transport in a slab,” in Proceedings of the Symposium on Laser Optics of Condensed Matter, J. L. Birman, H. Z. Cummins, A. A. Kaplyanskii, eds. (Plenum, New York, 1987), pp. 229–235.
  2. G. H. Watson, P. A. Fleury, S. L. McCall, “Search for photon localization in the time domain,” Phys. Rev. Lett. 58, 945–948 (1987).
    [CrossRef] [PubMed]
  3. P. Sheng, ed., Scattering and Localization of Classical Waves in Random Medium (World Scientific, Singapore, 1990).
  4. K. M. Yoo, R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15, 320–322 (1990).
    [CrossRef] [PubMed]
  5. L. Goldman, ed., Laser Non-Surgical Medicine—New Challenges for An Old Application (Technomic, Lancaster, Pa., 1991).
  6. W. F. Cheong, S. A. Prahl, A. J. Welsh, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  7. B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
    [CrossRef]
  8. J. C. Dainty, ed., Laser Speckle and Related Phenomena (Springer-Verlag, Berlin, 1975), pp. 203–278.
  9. K. M. Yoo, F. Liu, R. R. Alfano, “Imaging through a scattering wall using absorption,” Opt. Lett. 16, 1068–1070 (1991).
    [CrossRef] [PubMed]
  10. K. M. Yoo, Z. W. Zang, S. A. Ahmed, R. R. Alfano, “Imaging objects hidden in scattering media using a fluorescence-absorption technique,” Opt. Lett. 16, 1252–1254 (1991).
    [CrossRef] [PubMed]
  11. K. M. Yoo, Q. Xing, R. R. Alfano, “Imaging objects hidden in highly scattering media using femtosecond second-harmonic-generation cross-correlation time gating,” Opt. Lett. 16, 1019–1021 (1991).
    [CrossRef] [PubMed]
  12. P. P. Ho, P. Baldeck, K. S. Wong, K. M. Yoo, D. Lee, R. R. Alfano, “Time dynamics of photon migration in semiopaque random media,” Appl. Opt. 28, 2304–2310 (1989).
    [CrossRef] [PubMed]
  13. L. M. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
    [CrossRef] [PubMed]
  14. S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
    [CrossRef] [PubMed]
  15. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
    [CrossRef] [PubMed]
  16. J. C. Hebden, R. A. Kruger, K. S. Wong, “Time resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991).
    [CrossRef] [PubMed]
  17. K. M. Yoo, B. B. Das, R. R. Alfano, “Imaging of a translucent object hidden in a highly scattering medium from the early portion of the diffuse component of a transmitted ultrafast laser pulse,” Opt. Lett. 16, 958–960 (1992).
    [CrossRef]
  18. F. Liu, K. M. Yoo, R. R. Alfano, “Speed of the coherent component of femtosecond laser pulses propagating through random scattering media,” Opt. Lett. 16, 351–353 (1991).
    [CrossRef] [PubMed]
  19. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the nonivasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  20. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wary, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
    [CrossRef]
  21. K. M. Yoo, F. Liu, R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?” Phys. Rev. Lett. 64, 2647–2650 (1990); erratum 65, 2210–2211 (1990).
    [CrossRef] [PubMed]

1992

1991

1990

K. M. Yoo, F. Liu, R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?” Phys. Rev. Lett. 64, 2647–2650 (1990); erratum 65, 2210–2211 (1990).
[CrossRef] [PubMed]

K. M. Yoo, R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15, 320–322 (1990).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, A. J. Welsh, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

1989

1988

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wary, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef]

1987

G. H. Watson, P. A. Fleury, S. L. McCall, “Search for photon localization in the time domain,” Phys. Rev. Lett. 58, 945–948 (1987).
[CrossRef] [PubMed]

Ahmed, S. A.

Alfano, R. R.

K. M. Yoo, B. B. Das, R. R. Alfano, “Imaging of a translucent object hidden in a highly scattering medium from the early portion of the diffuse component of a transmitted ultrafast laser pulse,” Opt. Lett. 16, 958–960 (1992).
[CrossRef]

F. Liu, K. M. Yoo, R. R. Alfano, “Speed of the coherent component of femtosecond laser pulses propagating through random scattering media,” Opt. Lett. 16, 351–353 (1991).
[CrossRef] [PubMed]

L. M. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

K. M. Yoo, F. Liu, R. R. Alfano, “Imaging through a scattering wall using absorption,” Opt. Lett. 16, 1068–1070 (1991).
[CrossRef] [PubMed]

K. M. Yoo, Q. Xing, R. R. Alfano, “Imaging objects hidden in highly scattering media using femtosecond second-harmonic-generation cross-correlation time gating,” Opt. Lett. 16, 1019–1021 (1991).
[CrossRef] [PubMed]

K. M. Yoo, Z. W. Zang, S. A. Ahmed, R. R. Alfano, “Imaging objects hidden in scattering media using a fluorescence-absorption technique,” Opt. Lett. 16, 1252–1254 (1991).
[CrossRef] [PubMed]

K. M. Yoo, R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15, 320–322 (1990).
[CrossRef] [PubMed]

K. M. Yoo, F. Liu, R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?” Phys. Rev. Lett. 64, 2647–2650 (1990); erratum 65, 2210–2211 (1990).
[CrossRef] [PubMed]

P. P. Ho, P. Baldeck, K. S. Wong, K. M. Yoo, D. Lee, R. R. Alfano, “Time dynamics of photon migration in semiopaque random media,” Appl. Opt. 28, 2304–2310 (1989).
[CrossRef] [PubMed]

Andersson-Engels, S.

Arridge, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wary, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef]

Baldeck, P.

Berg, R.

Chance, B.

Chen, H.

Chen, Y.

Cheong, W. F.

W. F. Cheong, S. A. Prahl, A. J. Welsh, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Cope, M.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wary, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef]

Das, B. B.

Delpy, D. T.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wary, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef]

Dilworth, D.

Fleury, P. A.

G. H. Watson, P. A. Fleury, S. L. McCall, “Search for photon localization in the time domain,” Phys. Rev. Lett. 58, 945–948 (1987).
[CrossRef] [PubMed]

Fulton, R. C.

M. Lax, V. Nayaranamurti, R. C. Fulton, “Classical diffusive photon transport in a slab,” in Proceedings of the Symposium on Laser Optics of Condensed Matter, J. L. Birman, H. Z. Cummins, A. A. Kaplyanskii, eds. (Plenum, New York, 1987), pp. 229–235.

Hebden, J. C.

Ho, P. P.

L. M. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

P. P. Ho, P. Baldeck, K. S. Wong, K. M. Yoo, D. Lee, R. R. Alfano, “Time dynamics of photon migration in semiopaque random media,” Appl. Opt. 28, 2304–2310 (1989).
[CrossRef] [PubMed]

Jacques, S. L.

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

Jarlman, O.

Kruger, R. A.

Lax, M.

M. Lax, V. Nayaranamurti, R. C. Fulton, “Classical diffusive photon transport in a slab,” in Proceedings of the Symposium on Laser Optics of Condensed Matter, J. L. Birman, H. Z. Cummins, A. A. Kaplyanskii, eds. (Plenum, New York, 1987), pp. 229–235.

Lee, D.

Leith, E.

Liu, C.

L. M. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Liu, F.

Lopez, J.

McCall, S. L.

G. H. Watson, P. A. Fleury, S. L. McCall, “Search for photon localization in the time domain,” Phys. Rev. Lett. 58, 945–948 (1987).
[CrossRef] [PubMed]

Nayaranamurti, V.

M. Lax, V. Nayaranamurti, R. C. Fulton, “Classical diffusive photon transport in a slab,” in Proceedings of the Symposium on Laser Optics of Condensed Matter, J. L. Birman, H. Z. Cummins, A. A. Kaplyanskii, eds. (Plenum, New York, 1987), pp. 229–235.

Patterson, M. S.

Prahl, S. A.

W. F. Cheong, S. A. Prahl, A. J. Welsh, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Svanberg, S.

Valdmanis, J.

van der Zee, P.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wary, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef]

Wang, L. M.

L. M. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Wary, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wary, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef]

Watson, G. H.

G. H. Watson, P. A. Fleury, S. L. McCall, “Search for photon localization in the time domain,” Phys. Rev. Lett. 58, 945–948 (1987).
[CrossRef] [PubMed]

Welsh, A. J.

W. F. Cheong, S. A. Prahl, A. J. Welsh, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Wilson, B. C.

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the nonivasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Wong, K. S.

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wary, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef]

Xing, Q.

Yoo, K. M.

K. M. Yoo, B. B. Das, R. R. Alfano, “Imaging of a translucent object hidden in a highly scattering medium from the early portion of the diffuse component of a transmitted ultrafast laser pulse,” Opt. Lett. 16, 958–960 (1992).
[CrossRef]

F. Liu, K. M. Yoo, R. R. Alfano, “Speed of the coherent component of femtosecond laser pulses propagating through random scattering media,” Opt. Lett. 16, 351–353 (1991).
[CrossRef] [PubMed]

K. M. Yoo, F. Liu, R. R. Alfano, “Imaging through a scattering wall using absorption,” Opt. Lett. 16, 1068–1070 (1991).
[CrossRef] [PubMed]

K. M. Yoo, Q. Xing, R. R. Alfano, “Imaging objects hidden in highly scattering media using femtosecond second-harmonic-generation cross-correlation time gating,” Opt. Lett. 16, 1019–1021 (1991).
[CrossRef] [PubMed]

K. M. Yoo, Z. W. Zang, S. A. Ahmed, R. R. Alfano, “Imaging objects hidden in scattering media using a fluorescence-absorption technique,” Opt. Lett. 16, 1252–1254 (1991).
[CrossRef] [PubMed]

K. M. Yoo, R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15, 320–322 (1990).
[CrossRef] [PubMed]

K. M. Yoo, F. Liu, R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?” Phys. Rev. Lett. 64, 2647–2650 (1990); erratum 65, 2210–2211 (1990).
[CrossRef] [PubMed]

P. P. Ho, P. Baldeck, K. S. Wong, K. M. Yoo, D. Lee, R. R. Alfano, “Time dynamics of photon migration in semiopaque random media,” Appl. Opt. 28, 2304–2310 (1989).
[CrossRef] [PubMed]

Zang, Z. W.

Zhang, G.

L. M. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Appl. Opt.

IEEE J. Quantum Electron.

W. F. Cheong, S. A. Prahl, A. J. Welsh, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

Opt. Lett.

K. M. Yoo, R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15, 320–322 (1990).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
[CrossRef] [PubMed]

F. Liu, K. M. Yoo, R. R. Alfano, “Speed of the coherent component of femtosecond laser pulses propagating through random scattering media,” Opt. Lett. 16, 351–353 (1991).
[CrossRef] [PubMed]

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
[CrossRef] [PubMed]

K. M. Yoo, B. B. Das, R. R. Alfano, “Imaging of a translucent object hidden in a highly scattering medium from the early portion of the diffuse component of a transmitted ultrafast laser pulse,” Opt. Lett. 16, 958–960 (1992).
[CrossRef]

K. M. Yoo, Q. Xing, R. R. Alfano, “Imaging objects hidden in highly scattering media using femtosecond second-harmonic-generation cross-correlation time gating,” Opt. Lett. 16, 1019–1021 (1991).
[CrossRef] [PubMed]

K. M. Yoo, F. Liu, R. R. Alfano, “Imaging through a scattering wall using absorption,” Opt. Lett. 16, 1068–1070 (1991).
[CrossRef] [PubMed]

K. M. Yoo, Z. W. Zang, S. A. Ahmed, R. R. Alfano, “Imaging objects hidden in scattering media using a fluorescence-absorption technique,” Opt. Lett. 16, 1252–1254 (1991).
[CrossRef] [PubMed]

Phys. Med. Biol.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wary, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef]

Phys. Rev. Lett.

K. M. Yoo, F. Liu, R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?” Phys. Rev. Lett. 64, 2647–2650 (1990); erratum 65, 2210–2211 (1990).
[CrossRef] [PubMed]

G. H. Watson, P. A. Fleury, S. L. McCall, “Search for photon localization in the time domain,” Phys. Rev. Lett. 58, 945–948 (1987).
[CrossRef] [PubMed]

Science

L. M. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Other

M. Lax, V. Nayaranamurti, R. C. Fulton, “Classical diffusive photon transport in a slab,” in Proceedings of the Symposium on Laser Optics of Condensed Matter, J. L. Birman, H. Z. Cummins, A. A. Kaplyanskii, eds. (Plenum, New York, 1987), pp. 229–235.

P. Sheng, ed., Scattering and Localization of Classical Waves in Random Medium (World Scientific, Singapore, 1990).

L. Goldman, ed., Laser Non-Surgical Medicine—New Challenges for An Old Application (Technomic, Lancaster, Pa., 1991).

J. C. Dainty, ed., Laser Speckle and Related Phenomena (Springer-Verlag, Berlin, 1975), pp. 203–278.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Normalized temporal profile measured by SHG cross-correlation of a 100-fs ultrafast laser pulse transmitted through (a) air and (b) 1.8-mm-thick. The intensity at the peak of curve (b) is 7.7 × 10–6 times the peak intensity of curve (a). The zero time is set at the arrival time of the pulse transmitted through air.

Fig. 2
Fig. 2

Normalized temporal profile plotted on a contracted time scale measured by the SHG cross-correlation of a 100-fs ultrafast laser pulse transmitted through (a) air and (b) 1.8-mm-, (c) 4.5-mm-, and (d) 7.0-mm-thick tissue. The peak intensities were 7.7 × 10−6, 1.2 × 10−7, and 9.6 × 10−9 times the peak intensity of curve (a) for curves (b), (c), and (d), respectively.

Fig. 3
Fig. 3

Plot of the delay time of arrival at the peak of an ultrafast laser pulse transmitted through tissues versus the thickness of the tissues. The experimental results are plotted by the squares. The solid line is the best linear fit of the effective group index ng = 1.49.

Fig. 4
Fig. 4

Normalized temporal profile measured by the streak camera of a 100-fs ultrafast laser pulse transmitted through (a) air and (b) 1.8-mm-, (c) 7.0-mm-, (d) 9.0-mm-, and (e) 12.0-mm-thick tissues. The zero time was selected at the peak of the transmitted pulse.

Fig. 5
Fig. 5

One-dimensional images of a bar code measured by the SHG cross-correlation technique at various time delays located (a) in air with a zero time delay, (b) in 6.5-mm-thick tissue with the delay time set at 9.8 ps, (c) in a 6.5-mm-thick tissue with the delay time set at 14.5 ps.

Metrics