Abstract

We demonstrate that use of a picosecond double-stage Kerr gate system results in a 3-orders-of-magnitude improvement in signal-to-noise ratio and a threefold improvement in shutter speed compared with those of a single-stage Kerr gate.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Wang, P. Ho, C. Liu, G. Zhang, R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
    [CrossRef] [PubMed]
  2. J. Fujimoto, S. De Silversti, E. Ippen, R. Margolis, A. Oseroff, “Femtosecond optical ranging in biological system,” Opt. Lett. 11, 150–152 (1986).
    [CrossRef] [PubMed]
  3. M. A. Duguay, J. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
    [CrossRef]
  4. P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2182 (1979).
    [CrossRef]
  5. K. G. Spears, J. Serafin, N. H. Abramson, “Chron-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
    [CrossRef] [PubMed]
  6. B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and un-resolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 5, 4971–4975 (1988).
    [CrossRef]
  7. J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17-3, 351–356 (1990).
    [CrossRef]
  8. S. Anderson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnosis,” Opt. Lett. 15, 1178–1180 (1990).
    [CrossRef]
  9. J. Lakowicz, K. Berndt, “Lifetime-selective fluorescence imaging using an rf phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1735 (1991).
    [CrossRef]
  10. S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in high scattering tissues—II: Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
    [CrossRef] [PubMed]
  11. N. H. Ahramson, K. G. Spears, “Single pulse light-in-flight recording by holography,” Appl. Opt. 28, 1834–1841 (1989).
    [CrossRef]
  12. S. L. Jacques, “Time-resolved propagation of ultrashort laser pulses within turbid tissues,” Appl. Opt. 28, 2223–2229 (1989).
    [CrossRef] [PubMed]
  13. G. Yoon, A. J. Welch, M. Motamedi, M. Van Gemert, “Development and application of three dimensional light distribution model of laser irradiated tissue,” IEEE J. Quantum Electron. QE-23, 1721–1733 (1987).
    [CrossRef]
  14. Y. Kusa, A. Ishmaru, A. P. Bruckner, “Experiments on picosecond pulse propagation in a diffusive medium,” J. Opt. Soc. Am. 73, 1812–1815 (1983).
    [CrossRef]
  15. F. Knight, D. Klick, D. Ryan-Howard, J. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30, 55–65 (1991).
    [CrossRef]
  16. H. Chen, Y. Chen, D. Dillworth, E. Leith, J. Lopez, J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
    [CrossRef] [PubMed]
  17. A. Rebane, J. Feinberg, “Time-resolved holography,” Nature (London) 351, 378–380 (1991).
    [CrossRef]
  18. K. M. Yoo, R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15, 320–322 (1990).
    [CrossRef] [PubMed]
  19. G. Navarro, A. Profio, “Contrast in diaphanography of the breast,” Med. Phys. 15, 181–187 (1988).
    [CrossRef] [PubMed]
  20. R. Egan, Breast Imaging (Saunders, London, 1988).
  21. T. Kline, I. Kline, Guides to Clinical Aspiration Biopsy Breast (Igaku-Shoin, New York, 1989).
  22. J. J. Gisvold, L. Brown, R. Swee, D. Raygor, N. Dockson, “Comparison of mammography and transillumination light scanning in the detection of breast lesions,” Am. J. Roentgenol. 147, 191–194 (1986).
  23. P. Ho, L. Wang, R. Alfano, “Ballistic time-gate optical imaging in turbid media,” in Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1599, 325–331 (1992).
  24. P. Ho, G. Zhang, P. Baldeck, R. Alfano, “Optical tomography using ultrashort laser pulses,” in Photon Migration in Tissues, B. Chance, ed. (Plenum, New York, 1990), pp. 95–109.
  25. L. Wang, Y. Liu, P. P. Ho, R. R. Alfano, “Time-resolved imaging of tissues,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 97–101 (1991).
  26. P. Ho, P. Baldeck, K. Wong, K. Yoo, D. Lee, R. Alfano, “Time dynamics of photon migration in semi-opaque media,” Appl. Opt. 28, 2304–2330 (1989).
    [CrossRef] [PubMed]
  27. L. Wang, G. Zhang, C. Liu, P. Ho, R. Alfano, “Imaging of quasi-point sources in semiopaque media,” in Proceedings of International Lasers ’89, F. Durate, ed. (STS, McLean, Va., 1990), pp. 1074–1076.
  28. A. Ishmaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  29. Q. X. Li, T. Jimbo, P. P. Ho, R. R. Alfano, “Temporal distribution of ultrafast supercontinuum laser pulses,” Appl. Opt. 25, 1869–1871 (1986).
    [CrossRef] [PubMed]
  30. K. Sala, M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12, 1036–1047 (1975).
    [CrossRef]
  31. P. Ho, “Picosecond Kerr gate,” in Semiconductor Processes Probed by Ultrafast Lasers, R. Alfano, ed. (Springer-Verlag, New York, 1984), Vol. 2, Chap. 25, pp. 410–439.
  32. D. McMorrow, W. Lotshaw, G. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear response in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
    [CrossRef]
  33. P. P. Ho, R. R. Alfano, “Oscillatory optical induced Kerr kinetics in nitrobenzene,” Opt. Commun. 30, 426–428 (1979).
    [CrossRef]
  34. P. P. Ho, P. Y. Lu, R. R. Alfano, “Observation of broadened and oscillatory optical induced Kerr kinetics in neat liquids,” Phys. Rev. A 21, 1730–1733 (1980).
    [CrossRef]

1991 (5)

J. Lakowicz, K. Berndt, “Lifetime-selective fluorescence imaging using an rf phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1735 (1991).
[CrossRef]

L. Wang, P. Ho, C. Liu, G. Zhang, R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

F. Knight, D. Klick, D. Ryan-Howard, J. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30, 55–65 (1991).
[CrossRef]

A. Rebane, J. Feinberg, “Time-resolved holography,” Nature (London) 351, 378–380 (1991).
[CrossRef]

H. Chen, Y. Chen, D. Dillworth, E. Leith, J. Lopez, J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
[CrossRef] [PubMed]

1990 (3)

K. M. Yoo, R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15, 320–322 (1990).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17-3, 351–356 (1990).
[CrossRef]

S. Anderson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnosis,” Opt. Lett. 15, 1178–1180 (1990).
[CrossRef]

1989 (5)

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in high scattering tissues—II: Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[CrossRef] [PubMed]

K. G. Spears, J. Serafin, N. H. Abramson, “Chron-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef] [PubMed]

N. H. Ahramson, K. G. Spears, “Single pulse light-in-flight recording by holography,” Appl. Opt. 28, 1834–1841 (1989).
[CrossRef]

S. L. Jacques, “Time-resolved propagation of ultrashort laser pulses within turbid tissues,” Appl. Opt. 28, 2223–2229 (1989).
[CrossRef] [PubMed]

P. Ho, P. Baldeck, K. Wong, K. Yoo, D. Lee, R. Alfano, “Time dynamics of photon migration in semi-opaque media,” Appl. Opt. 28, 2304–2330 (1989).
[CrossRef] [PubMed]

1988 (3)

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and un-resolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 5, 4971–4975 (1988).
[CrossRef]

D. McMorrow, W. Lotshaw, G. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear response in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[CrossRef]

G. Navarro, A. Profio, “Contrast in diaphanography of the breast,” Med. Phys. 15, 181–187 (1988).
[CrossRef] [PubMed]

1987 (1)

G. Yoon, A. J. Welch, M. Motamedi, M. Van Gemert, “Development and application of three dimensional light distribution model of laser irradiated tissue,” IEEE J. Quantum Electron. QE-23, 1721–1733 (1987).
[CrossRef]

1986 (3)

1983 (1)

1980 (1)

P. P. Ho, P. Y. Lu, R. R. Alfano, “Observation of broadened and oscillatory optical induced Kerr kinetics in neat liquids,” Phys. Rev. A 21, 1730–1733 (1980).
[CrossRef]

1979 (2)

P. P. Ho, R. R. Alfano, “Oscillatory optical induced Kerr kinetics in nitrobenzene,” Opt. Commun. 30, 426–428 (1979).
[CrossRef]

P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2182 (1979).
[CrossRef]

1975 (1)

K. Sala, M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12, 1036–1047 (1975).
[CrossRef]

1969 (1)

M. A. Duguay, J. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[CrossRef]

Abramson, N. H.

K. G. Spears, J. Serafin, N. H. Abramson, “Chron-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef] [PubMed]

Ahramson, N. H.

Alfano, R.

L. Wang, P. Ho, C. Liu, G. Zhang, R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

P. Ho, P. Baldeck, K. Wong, K. Yoo, D. Lee, R. Alfano, “Time dynamics of photon migration in semi-opaque media,” Appl. Opt. 28, 2304–2330 (1989).
[CrossRef] [PubMed]

P. Ho, L. Wang, R. Alfano, “Ballistic time-gate optical imaging in turbid media,” in Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1599, 325–331 (1992).

P. Ho, G. Zhang, P. Baldeck, R. Alfano, “Optical tomography using ultrashort laser pulses,” in Photon Migration in Tissues, B. Chance, ed. (Plenum, New York, 1990), pp. 95–109.

L. Wang, G. Zhang, C. Liu, P. Ho, R. Alfano, “Imaging of quasi-point sources in semiopaque media,” in Proceedings of International Lasers ’89, F. Durate, ed. (STS, McLean, Va., 1990), pp. 1074–1076.

Alfano, R. R.

K. M. Yoo, R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15, 320–322 (1990).
[CrossRef] [PubMed]

Q. X. Li, T. Jimbo, P. P. Ho, R. R. Alfano, “Temporal distribution of ultrafast supercontinuum laser pulses,” Appl. Opt. 25, 1869–1871 (1986).
[CrossRef] [PubMed]

P. P. Ho, P. Y. Lu, R. R. Alfano, “Observation of broadened and oscillatory optical induced Kerr kinetics in neat liquids,” Phys. Rev. A 21, 1730–1733 (1980).
[CrossRef]

P. P. Ho, R. R. Alfano, “Oscillatory optical induced Kerr kinetics in nitrobenzene,” Opt. Commun. 30, 426–428 (1979).
[CrossRef]

P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2182 (1979).
[CrossRef]

L. Wang, Y. Liu, P. P. Ho, R. R. Alfano, “Time-resolved imaging of tissues,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 97–101 (1991).

Anderson-Engels, S.

S. Anderson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnosis,” Opt. Lett. 15, 1178–1180 (1990).
[CrossRef]

Baldeck, P.

P. Ho, P. Baldeck, K. Wong, K. Yoo, D. Lee, R. Alfano, “Time dynamics of photon migration in semi-opaque media,” Appl. Opt. 28, 2304–2330 (1989).
[CrossRef] [PubMed]

P. Ho, G. Zhang, P. Baldeck, R. Alfano, “Optical tomography using ultrashort laser pulses,” in Photon Migration in Tissues, B. Chance, ed. (Plenum, New York, 1990), pp. 95–109.

Berg, R.

S. Anderson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnosis,” Opt. Lett. 15, 1178–1180 (1990).
[CrossRef]

Berndt, K.

J. Lakowicz, K. Berndt, “Lifetime-selective fluorescence imaging using an rf phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1735 (1991).
[CrossRef]

Boretsky, R.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and un-resolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 5, 4971–4975 (1988).
[CrossRef]

Brown, L.

J. J. Gisvold, L. Brown, R. Swee, D. Raygor, N. Dockson, “Comparison of mammography and transillumination light scanning in the detection of breast lesions,” Am. J. Roentgenol. 147, 191–194 (1986).

Bruckner, A. P.

Chance, B.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and un-resolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 5, 4971–4975 (1988).
[CrossRef]

Chen, H.

Chen, Y.

Cohen, P.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and un-resolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 5, 4971–4975 (1988).
[CrossRef]

De Silversti, S.

Dillworth, D.

Dockson, N.

J. J. Gisvold, L. Brown, R. Swee, D. Raygor, N. Dockson, “Comparison of mammography and transillumination light scanning in the detection of breast lesions,” Am. J. Roentgenol. 147, 191–194 (1986).

Duguay, M. A.

M. A. Duguay, J. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[CrossRef]

Egan, R.

R. Egan, Breast Imaging (Saunders, London, 1988).

Feinberg, J.

A. Rebane, J. Feinberg, “Time-resolved holography,” Nature (London) 351, 378–380 (1991).
[CrossRef]

Finander, M.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and un-resolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 5, 4971–4975 (1988).
[CrossRef]

Flock, S. T.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in high scattering tissues—II: Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[CrossRef] [PubMed]

Fujimoto, J.

Gisvold, J. J.

J. J. Gisvold, L. Brown, R. Swee, D. Raygor, N. Dockson, “Comparison of mammography and transillumination light scanning in the detection of breast lesions,” Am. J. Roentgenol. 147, 191–194 (1986).

Greenfield, R.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and un-resolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 5, 4971–4975 (1988).
[CrossRef]

Hansen, J.

M. A. Duguay, J. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[CrossRef]

Hebden, J. C.

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17-3, 351–356 (1990).
[CrossRef]

Ho, P.

L. Wang, P. Ho, C. Liu, G. Zhang, R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

P. Ho, P. Baldeck, K. Wong, K. Yoo, D. Lee, R. Alfano, “Time dynamics of photon migration in semi-opaque media,” Appl. Opt. 28, 2304–2330 (1989).
[CrossRef] [PubMed]

P. Ho, L. Wang, R. Alfano, “Ballistic time-gate optical imaging in turbid media,” in Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1599, 325–331 (1992).

P. Ho, G. Zhang, P. Baldeck, R. Alfano, “Optical tomography using ultrashort laser pulses,” in Photon Migration in Tissues, B. Chance, ed. (Plenum, New York, 1990), pp. 95–109.

P. Ho, “Picosecond Kerr gate,” in Semiconductor Processes Probed by Ultrafast Lasers, R. Alfano, ed. (Springer-Verlag, New York, 1984), Vol. 2, Chap. 25, pp. 410–439.

L. Wang, G. Zhang, C. Liu, P. Ho, R. Alfano, “Imaging of quasi-point sources in semiopaque media,” in Proceedings of International Lasers ’89, F. Durate, ed. (STS, McLean, Va., 1990), pp. 1074–1076.

Ho, P. P.

Q. X. Li, T. Jimbo, P. P. Ho, R. R. Alfano, “Temporal distribution of ultrafast supercontinuum laser pulses,” Appl. Opt. 25, 1869–1871 (1986).
[CrossRef] [PubMed]

P. P. Ho, P. Y. Lu, R. R. Alfano, “Observation of broadened and oscillatory optical induced Kerr kinetics in neat liquids,” Phys. Rev. A 21, 1730–1733 (1980).
[CrossRef]

P. P. Ho, R. R. Alfano, “Oscillatory optical induced Kerr kinetics in nitrobenzene,” Opt. Commun. 30, 426–428 (1979).
[CrossRef]

P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2182 (1979).
[CrossRef]

L. Wang, Y. Liu, P. P. Ho, R. R. Alfano, “Time-resolved imaging of tissues,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 97–101 (1991).

Ippen, E.

Ishmaru, A.

Jacques, S. L.

Jarlman, O.

S. Anderson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnosis,” Opt. Lett. 15, 1178–1180 (1990).
[CrossRef]

Jimbo, T.

Kaufmann, K.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and un-resolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 5, 4971–4975 (1988).
[CrossRef]

Kenney-Wallace, G.

D. McMorrow, W. Lotshaw, G. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear response in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[CrossRef]

Klick, D.

F. Knight, D. Klick, D. Ryan-Howard, J. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30, 55–65 (1991).
[CrossRef]

Kline, I.

T. Kline, I. Kline, Guides to Clinical Aspiration Biopsy Breast (Igaku-Shoin, New York, 1989).

Kline, T.

T. Kline, I. Kline, Guides to Clinical Aspiration Biopsy Breast (Igaku-Shoin, New York, 1989).

Knight, F.

F. Knight, D. Klick, D. Ryan-Howard, J. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30, 55–65 (1991).
[CrossRef]

Kruger, R. A.

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17-3, 351–356 (1990).
[CrossRef]

Kusa, Y.

Lakowicz, J.

J. Lakowicz, K. Berndt, “Lifetime-selective fluorescence imaging using an rf phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1735 (1991).
[CrossRef]

Lee, D.

Leigh, J.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and un-resolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 5, 4971–4975 (1988).
[CrossRef]

Leith, E.

Levy, W.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and un-resolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 5, 4971–4975 (1988).
[CrossRef]

Li, Q. X.

Liu, C.

L. Wang, P. Ho, C. Liu, G. Zhang, R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

L. Wang, G. Zhang, C. Liu, P. Ho, R. Alfano, “Imaging of quasi-point sources in semiopaque media,” in Proceedings of International Lasers ’89, F. Durate, ed. (STS, McLean, Va., 1990), pp. 1074–1076.

Liu, Y.

L. Wang, Y. Liu, P. P. Ho, R. R. Alfano, “Time-resolved imaging of tissues,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 97–101 (1991).

Lopez, J.

Lotshaw, W.

D. McMorrow, W. Lotshaw, G. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear response in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[CrossRef]

Lu, P. Y.

P. P. Ho, P. Y. Lu, R. R. Alfano, “Observation of broadened and oscillatory optical induced Kerr kinetics in neat liquids,” Phys. Rev. A 21, 1730–1733 (1980).
[CrossRef]

Margolis, R.

McMorrow, D.

D. McMorrow, W. Lotshaw, G. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear response in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[CrossRef]

Miyake, J.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and un-resolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 5, 4971–4975 (1988).
[CrossRef]

Motamedi, M.

G. Yoon, A. J. Welch, M. Motamedi, M. Van Gemert, “Development and application of three dimensional light distribution model of laser irradiated tissue,” IEEE J. Quantum Electron. QE-23, 1721–1733 (1987).
[CrossRef]

Navarro, G.

G. Navarro, A. Profio, “Contrast in diaphanography of the breast,” Med. Phys. 15, 181–187 (1988).
[CrossRef] [PubMed]

Nioka, S.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and un-resolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 5, 4971–4975 (1988).
[CrossRef]

Oseroff, A.

Patterson, M. S.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in high scattering tissues—II: Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[CrossRef] [PubMed]

Profio, A.

G. Navarro, A. Profio, “Contrast in diaphanography of the breast,” Med. Phys. 15, 181–187 (1988).
[CrossRef] [PubMed]

Raygor, D.

J. J. Gisvold, L. Brown, R. Swee, D. Raygor, N. Dockson, “Comparison of mammography and transillumination light scanning in the detection of breast lesions,” Am. J. Roentgenol. 147, 191–194 (1986).

Rebane, A.

A. Rebane, J. Feinberg, “Time-resolved holography,” Nature (London) 351, 378–380 (1991).
[CrossRef]

Richardson, M. C.

K. Sala, M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12, 1036–1047 (1975).
[CrossRef]

Ryan-Howard, D.

F. Knight, D. Klick, D. Ryan-Howard, J. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30, 55–65 (1991).
[CrossRef]

Sala, K.

K. Sala, M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12, 1036–1047 (1975).
[CrossRef]

Serafin, J.

K. G. Spears, J. Serafin, N. H. Abramson, “Chron-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef] [PubMed]

Smith, D.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and un-resolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 5, 4971–4975 (1988).
[CrossRef]

Spears, K. G.

K. G. Spears, J. Serafin, N. H. Abramson, “Chron-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef] [PubMed]

N. H. Ahramson, K. G. Spears, “Single pulse light-in-flight recording by holography,” Appl. Opt. 28, 1834–1841 (1989).
[CrossRef]

Svanberg, S.

S. Anderson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnosis,” Opt. Lett. 15, 1178–1180 (1990).
[CrossRef]

Swee, R.

J. J. Gisvold, L. Brown, R. Swee, D. Raygor, N. Dockson, “Comparison of mammography and transillumination light scanning in the detection of breast lesions,” Am. J. Roentgenol. 147, 191–194 (1986).

Theriault, J.

F. Knight, D. Klick, D. Ryan-Howard, J. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30, 55–65 (1991).
[CrossRef]

Valdmanis, J.

Van Gemert, M.

G. Yoon, A. J. Welch, M. Motamedi, M. Van Gemert, “Development and application of three dimensional light distribution model of laser irradiated tissue,” IEEE J. Quantum Electron. QE-23, 1721–1733 (1987).
[CrossRef]

Wang, L.

L. Wang, P. Ho, C. Liu, G. Zhang, R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

L. Wang, Y. Liu, P. P. Ho, R. R. Alfano, “Time-resolved imaging of tissues,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 97–101 (1991).

P. Ho, L. Wang, R. Alfano, “Ballistic time-gate optical imaging in turbid media,” in Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1599, 325–331 (1992).

L. Wang, G. Zhang, C. Liu, P. Ho, R. Alfano, “Imaging of quasi-point sources in semiopaque media,” in Proceedings of International Lasers ’89, F. Durate, ed. (STS, McLean, Va., 1990), pp. 1074–1076.

Welch, A. J.

G. Yoon, A. J. Welch, M. Motamedi, M. Van Gemert, “Development and application of three dimensional light distribution model of laser irradiated tissue,” IEEE J. Quantum Electron. QE-23, 1721–1733 (1987).
[CrossRef]

Wilson, B. C.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in high scattering tissues—II: Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[CrossRef] [PubMed]

Wong, K.

Yoo, K.

Yoo, K. M.

Yoon, G.

G. Yoon, A. J. Welch, M. Motamedi, M. Van Gemert, “Development and application of three dimensional light distribution model of laser irradiated tissue,” IEEE J. Quantum Electron. QE-23, 1721–1733 (1987).
[CrossRef]

Yoshioka, H.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and un-resolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 5, 4971–4975 (1988).
[CrossRef]

Young, M.

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and un-resolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 5, 4971–4975 (1988).
[CrossRef]

Zhang, G.

L. Wang, P. Ho, C. Liu, G. Zhang, R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

L. Wang, G. Zhang, C. Liu, P. Ho, R. Alfano, “Imaging of quasi-point sources in semiopaque media,” in Proceedings of International Lasers ’89, F. Durate, ed. (STS, McLean, Va., 1990), pp. 1074–1076.

P. Ho, G. Zhang, P. Baldeck, R. Alfano, “Optical tomography using ultrashort laser pulses,” in Photon Migration in Tissues, B. Chance, ed. (Plenum, New York, 1990), pp. 95–109.

Am. J. Roentgenol. (1)

J. J. Gisvold, L. Brown, R. Swee, D. Raygor, N. Dockson, “Comparison of mammography and transillumination light scanning in the detection of breast lesions,” Am. J. Roentgenol. 147, 191–194 (1986).

Appl. Opt. (4)

Appl. Phys. Lett. (1)

M. A. Duguay, J. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. Yoon, A. J. Welch, M. Motamedi, M. Van Gemert, “Development and application of three dimensional light distribution model of laser irradiated tissue,” IEEE J. Quantum Electron. QE-23, 1721–1733 (1987).
[CrossRef]

D. McMorrow, W. Lotshaw, G. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear response in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[CrossRef]

IEEE Trans. Biomed. Eng. (2)

K. G. Spears, J. Serafin, N. H. Abramson, “Chron-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef] [PubMed]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in high scattering tissues—II: Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Med. Phys. (2)

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17-3, 351–356 (1990).
[CrossRef]

G. Navarro, A. Profio, “Contrast in diaphanography of the breast,” Med. Phys. 15, 181–187 (1988).
[CrossRef] [PubMed]

Nature (London) (1)

A. Rebane, J. Feinberg, “Time-resolved holography,” Nature (London) 351, 378–380 (1991).
[CrossRef]

Opt. Commun. (1)

P. P. Ho, R. R. Alfano, “Oscillatory optical induced Kerr kinetics in nitrobenzene,” Opt. Commun. 30, 426–428 (1979).
[CrossRef]

Opt. Eng. (1)

F. Knight, D. Klick, D. Ryan-Howard, J. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30, 55–65 (1991).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (3)

K. Sala, M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12, 1036–1047 (1975).
[CrossRef]

P. P. Ho, P. Y. Lu, R. R. Alfano, “Observation of broadened and oscillatory optical induced Kerr kinetics in neat liquids,” Phys. Rev. A 21, 1730–1733 (1980).
[CrossRef]

P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2182 (1979).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

B. Chance, J. Leigh, J. Miyake, D. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and un-resolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 5, 4971–4975 (1988).
[CrossRef]

Rev. Sci. Instrum. (1)

J. Lakowicz, K. Berndt, “Lifetime-selective fluorescence imaging using an rf phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1735 (1991).
[CrossRef]

Science (1)

L. Wang, P. Ho, C. Liu, G. Zhang, R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Other (8)

R. Egan, Breast Imaging (Saunders, London, 1988).

T. Kline, I. Kline, Guides to Clinical Aspiration Biopsy Breast (Igaku-Shoin, New York, 1989).

P. Ho, L. Wang, R. Alfano, “Ballistic time-gate optical imaging in turbid media,” in Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1599, 325–331 (1992).

P. Ho, G. Zhang, P. Baldeck, R. Alfano, “Optical tomography using ultrashort laser pulses,” in Photon Migration in Tissues, B. Chance, ed. (Plenum, New York, 1990), pp. 95–109.

L. Wang, Y. Liu, P. P. Ho, R. R. Alfano, “Time-resolved imaging of tissues,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 97–101 (1991).

L. Wang, G. Zhang, C. Liu, P. Ho, R. Alfano, “Imaging of quasi-point sources in semiopaque media,” in Proceedings of International Lasers ’89, F. Durate, ed. (STS, McLean, Va., 1990), pp. 1074–1076.

A. Ishmaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).

P. Ho, “Picosecond Kerr gate,” in Semiconductor Processes Probed by Ultrafast Lasers, R. Alfano, ed. (Springer-Verlag, New York, 1984), Vol. 2, Chap. 25, pp. 410–439.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental setup of DOKG. A laser-pulse train from a mode-locked Nd:glass laser was used to study the gate. The laser-energy fluctuation was ±5% from shot to shot. ML, mode-locked picosecond laser-pulse train; KDP, potassium dihydrate phosphate crystal for a second-harmonic-generation pulse; BS, beam splitter; S, sample; DL, delay line; P1, P2, polarizers oriented at +45 and −45 with respect to the polarization of the 527-nm beam, respectively; A1, A2, analyzers oriented at −45 and +45 with respect to the polarization of the 527-nm beam, respectively; K1, K2, 1-cm-long CS2 Kerr cells; L, lens; SDL, stacked glass slides for the time delay control of the second stage; ND, neutral-density filters; NB, narrow-band filters; ICCD, image-intensified CCD camera detector with ~104 gain. (b) A SOKG setup.

Fig. 2
Fig. 2

Gated transmitted signals as a function of gating time τD for SOKG (●) and DOKG (○). The vertical scale is the transmitted probing beam intensity, and the horizontal scale is the delayed gating time in picoseconds. The time zero was chosen to be the maximum transmitted signal, which was an ~2-ps difference between SOKG data (●) and NDOKG (○). The standard deviation for the measured signal was ~10%. For SOKG the gating intensity was ~0.2 GW/cm2, the exp(−1) decay time was ~8 ps, the leakage noise level was ~700, and the maximum transmission efficiency was ~60%. For NDOKG the gating intensity of the first Kerr cell was ~1.2 GW/cm2, and the second Kerr cell was ~0.8 GW/cm2. The gating-time difference δt of two Kerr gates was 11 ps, the exp(−1) decay time was ~5.6 ps, and the maximum transmission efficiency was ~10%. The noise level of DOKG was 2 ± 1 counts (mainly from ICCD internal noise) at the input probing pulse intensity of ~106 W/cm2. The solid curve (a) is calculated from a laser-pulse profile that is a Gaussian function: 106 V/cm2 exp(−t2/52). The dashed curves (b) and (c) are calculated from Eq. (2) for SOKG and NDOKG, respectively. To align the peak transmitted signals of (a), (b), and (c), we shifted the time axis for (c) by 5.5 ps.

Fig. 3
Fig. 3

Experimental results for the measured convoluted exp(−1) decay time of the gated transmitted pulse signal as a function of the gating intensity: ●, SOKG; ○, SDOKG; ×, NDOKG (δt = 11 ps). (a), (b), (c) Calculated curves from Eq. (2) for SOKG, SDOKG, and NDOKG (δt = 11 ps), respectively.

Fig. 4
Fig. 4

Calculated temporal profiles (solid curves) of optical transfer function T(t) from Eq. (2) at two gating intensities: (1) 270 MW/cm2 and (2) 1.6 GW/cm2 for different gates: (a) SOKG, (b) SDOKG, and (c) NDOKG with τg = 5 ps, τo(CS2) = 1.8 ps, n2o = 1.6 × 10−11 esu and n2e = 0.25n2o; δt = 11 ps for NDOKG. The dashed and dash–dotted curves in (c) are the transfer functions from the individual gates 1 and 2, respectively. The peak of the NDOKG shifts to 5.5 ps, which is equal to one half of δt (=11 ps).

Fig. 5
Fig. 5

Calculated transient gating time [exp(−1) time Td(t)] as a function of the integrated Kerr gating time [exp(−1) time SD)] of a NDOKG. In the calculation gating pulse τg = 5 ps, probing pulse τ1 = 5 ps, and the gating intensity for both gates is 1 GW/cm2. The variation of the exp(−1) time Td(t) displayed on the horizontal axis depends on the overlap time between the two cascaded gates. For example, when δt = 0 ps, exp(−1) time Td(t) = 8.4 ps; when δt = 5 ps, exp(−1) time Td(t) = 4.6 ps; and when δt = 11 ps, exp(−1) time Td(t) = 1.6 ps.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ n ( t ) = n 2 e E g 2 ( t ) + ( n 2 o / τ 0 ) t E g 2 ( τ ) exp [ ( t τ ) / τ 0 ] d τ ,
S ( τ D ) = S 1 1 E 1 2 ( t τ D ) T s , d ( t ) d t ,

Metrics