Abstract

A novel method, condensed Monte Carlo simulation, is presented that applies the results of a single Monte Carlo simulation for a given albedo μs/(μa + μs) to obtaining results for other albedos; μs and μa are the scattering and absorption coefficients, respectively. The method requires only the storage of the number of interactions of each photon with the medium. The reflectance and transmittance of turbid slabs can thus be found from a limited number of condensed Monte Carlo simulations. We can use an inversion procedure to obtain the absorption and scattering coefficients from the total reflectance and total transmittance of slabs. Remitted photon densities from a semi-infinite medium as a function of the distance between the light source and the detector for all albedos can be found even from the results of a single condensed Monte Carlo simulation. The application of similarity rules may reduce further the number of Monte Carlo simulations that are needed to describe the influence of the distribution of scattering angles on the results.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription