Abstract

The use of the destructive interference of diffusive photon-density waves for the localization of an absorbing (and scattering) body in a scattering medium was studied. The objectives of this approach in the reflectance mode were as follows: first, to reduce sensitivity to absorption features occurring in superficial layers while sensitivity to bodies lying deeper is maintained; second, to establish a confined depth region of maximum sensitivity in which the distance of an absorbing body could be determined through phase measurement. Intensity and phase data were acquired with a modified frequency-domain spectrometer at modulation frequencies up to 600 MHz as an absorbing body was moved in three dimensions. The experimental results are compared with simulations based on a numerical solution of a time-dependent photon-diffusion equation.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Gratton, W. W. Mantulin, M. J. van de Ven, J. B. Fishkin, M. B. Maris, B. Chance, “Imaging of tissues using intensity-modulated near-infrared light,” submitted to Science.
  2. S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 204–215 (1991).
  3. W. Cui, C. Kumar, B. Chance, “Experimental study of migration depth for the photons measured at sample surface,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 180–191 (1991).
  4. K. W. Berndt, J. R. Lakowicz, “Detection and localization of absorbers in scattering media using frequency-domain principles,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 149–160 (1991).
  5. L. Wang, Y. Liu, P. P. Ho, R. R. Alfano, “Ballistic imaging of biomedical samples using picosecond optical Kerr gate,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 97–101 (1991).
  6. J. C. Hebden, R. A. Kruger, K. S. Wong, “Time resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991).
    [CrossRef] [PubMed]
  7. B. Chance, S. Nioka, J. Kent, K. McCullyy, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
    [CrossRef] [PubMed]
  8. B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
    [CrossRef] [PubMed]
  9. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
    [CrossRef] [PubMed]
  10. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
    [CrossRef] [PubMed]
  11. R. F. Bonner, R. Nossal, S. Havlin, G. H. Weiss, “Model for photon migration in turbid biological media,” J. Opt. Soc. Am. A 4, 423–432 (1987).
    [CrossRef] [PubMed]
  12. K. M. Yoo, F. Liu, R. R. Alfano, “Photon migration in random media: angle and time resolved studies,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1204, 492–498 (1990).
  13. J. R. Knutson, “Some prospects for adapting fluorescence instrumentation,” in Photon Migration in Tissues, B. Chance, ed. (Plenum, New York, 1990), pp. 43–51.
  14. F. A. Grünbaum, P. Kohn, G. A. Latham, J. R. Singer, J. P. Zubelli, “Diffusive tomography,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 232–238 (1991).
  15. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  16. J. R. Lakowicz, K. W. Berndt, M. L. Johnson, “Photon migration in scattering media and tissue,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1204, 468–480 (1990).
  17. J. R. Lakowicz, K. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166, 246–252 (1990).
    [CrossRef]
  18. J. Fishkin, E. Gratton, M. J. van de Ven, W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 1–14 (1991).
  19. A. Knüttel, J. R. Knutson, “Method and apparatus for imaging a physical parameter in turbid media using diffusive waves,” U.S. patent pending Application serial No. 07/722,823. (28June1991).
  20. E. Gratton, M. van de Ven, “A superheterodyning microwave phase fluorometer,” Biophys. J. 57, 378 (1990).
  21. J. M. Schmitt, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990).
    [CrossRef] [PubMed]
  22. J. Haselgrove, J. Leigh, C. Yee, N.-G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of photon migration in non-infinite highly scattering media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 30–41 (1991).
  23. E. M. Sevick, B. Chance, “Photon migration in a model of the head measured using time- and frequency-domain techniques: potentials of spectroscopy and imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 84–96 (1991).
  24. J. Crank, The Mathematics of Diffusion (Oxford U. Press, London, 1975), pp. 141–144.
  25. A. Ishimaru, “Diffusion of a pulse in densely distributed scatterers,” J. Opt. Soc. Am. 68, 1045–1050 (1978).
    [CrossRef]
  26. S. F. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
    [CrossRef] [PubMed]
  27. P. C. Lauterbur, “Image formation by induced local interactions: examples employing nuclear magnetic resonance,” Nature (London) 242, 190–191 (1973).
    [CrossRef]
  28. J. R. Lakowicz, K. W. Berndt, “Lifetime-selective fluorescence imaging using an rf phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
    [CrossRef]

1991 (3)

J. C. Hebden, R. A. Kruger, K. S. Wong, “Time resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991).
[CrossRef] [PubMed]

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

J. R. Lakowicz, K. W. Berndt, “Lifetime-selective fluorescence imaging using an rf phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
[CrossRef]

1990 (3)

J. R. Lakowicz, K. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166, 246–252 (1990).
[CrossRef]

E. Gratton, M. van de Ven, “A superheterodyning microwave phase fluorometer,” Biophys. J. 57, 378 (1990).

J. M. Schmitt, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990).
[CrossRef] [PubMed]

1989 (1)

1988 (3)

B. Chance, S. Nioka, J. Kent, K. McCullyy, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

1987 (2)

R. F. Bonner, R. Nossal, S. Havlin, G. H. Weiss, “Model for photon migration in turbid biological media,” J. Opt. Soc. Am. A 4, 423–432 (1987).
[CrossRef] [PubMed]

S. F. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

1978 (1)

1973 (1)

P. C. Lauterbur, “Image formation by induced local interactions: examples employing nuclear magnetic resonance,” Nature (London) 242, 190–191 (1973).
[CrossRef]

Alfano, R. R.

L. Wang, Y. Liu, P. P. Ho, R. R. Alfano, “Ballistic imaging of biomedical samples using picosecond optical Kerr gate,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 97–101 (1991).

K. M. Yoo, F. Liu, R. R. Alfano, “Photon migration in random media: angle and time resolved studies,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1204, 492–498 (1990).

Arridge, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Arridge, S. R.

S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 204–215 (1991).

Berndt, K.

J. R. Lakowicz, K. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166, 246–252 (1990).
[CrossRef]

Berndt, K. W.

J. R. Lakowicz, K. W. Berndt, “Lifetime-selective fluorescence imaging using an rf phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
[CrossRef]

J. R. Lakowicz, K. W. Berndt, M. L. Johnson, “Photon migration in scattering media and tissue,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1204, 468–480 (1990).

K. W. Berndt, J. R. Lakowicz, “Detection and localization of absorbers in scattering media using frequency-domain principles,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 149–160 (1991).

Bonner, R. F.

Boretsky, R.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Chance, B.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Kent, K. McCullyy, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

E. Gratton, W. W. Mantulin, M. J. van de Ven, J. B. Fishkin, M. B. Maris, B. Chance, “Imaging of tissues using intensity-modulated near-infrared light,” submitted to Science.

W. Cui, C. Kumar, B. Chance, “Experimental study of migration depth for the photons measured at sample surface,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 180–191 (1991).

J. Haselgrove, J. Leigh, C. Yee, N.-G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of photon migration in non-infinite highly scattering media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 30–41 (1991).

E. M. Sevick, B. Chance, “Photon migration in a model of the head measured using time- and frequency-domain techniques: potentials of spectroscopy and imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 84–96 (1991).

Cohen, P.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Cope, M.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 204–215 (1991).

Crank, J.

J. Crank, The Mathematics of Diffusion (Oxford U. Press, London, 1975), pp. 141–144.

Cui, W.

W. Cui, C. Kumar, B. Chance, “Experimental study of migration depth for the photons measured at sample surface,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 180–191 (1991).

Delpy, D. T.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 204–215 (1991).

Finander, M.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Fishkin, J.

J. Fishkin, E. Gratton, M. J. van de Ven, W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 1–14 (1991).

Fishkin, J. B.

E. Gratton, W. W. Mantulin, M. J. van de Ven, J. B. Fishkin, M. B. Maris, B. Chance, “Imaging of tissues using intensity-modulated near-infrared light,” submitted to Science.

Flock, S. F.

S. F. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

Fountain, M.

B. Chance, S. Nioka, J. Kent, K. McCullyy, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Gratton, E.

E. Gratton, M. van de Ven, “A superheterodyning microwave phase fluorometer,” Biophys. J. 57, 378 (1990).

J. Fishkin, E. Gratton, M. J. van de Ven, W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 1–14 (1991).

E. Gratton, W. W. Mantulin, M. J. van de Ven, J. B. Fishkin, M. B. Maris, B. Chance, “Imaging of tissues using intensity-modulated near-infrared light,” submitted to Science.

Greenfeld, R.

B. Chance, S. Nioka, J. Kent, K. McCullyy, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Grünbaum, F. A.

F. A. Grünbaum, P. Kohn, G. A. Latham, J. R. Singer, J. P. Zubelli, “Diffusive tomography,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 232–238 (1991).

Haselgrove, J.

J. Haselgrove, J. Leigh, C. Yee, N.-G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of photon migration in non-infinite highly scattering media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 30–41 (1991).

Havlin, S.

Hebden, J. C.

Ho, P. P.

L. Wang, Y. Liu, P. P. Ho, R. R. Alfano, “Ballistic imaging of biomedical samples using picosecond optical Kerr gate,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 97–101 (1991).

Holtom, G.

B. Chance, S. Nioka, J. Kent, K. McCullyy, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Ishimaru, A.

Johnson, M. L.

J. R. Lakowicz, K. W. Berndt, M. L. Johnson, “Photon migration in scattering media and tissue,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1204, 468–480 (1990).

Kaufmann, K.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Kent, J.

B. Chance, S. Nioka, J. Kent, K. McCullyy, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Knutson, J. R.

J. R. Knutson, “Some prospects for adapting fluorescence instrumentation,” in Photon Migration in Tissues, B. Chance, ed. (Plenum, New York, 1990), pp. 43–51.

A. Knüttel, J. R. Knutson, “Method and apparatus for imaging a physical parameter in turbid media using diffusive waves,” U.S. patent pending Application serial No. 07/722,823. (28June1991).

Knüttel, A.

A. Knüttel, J. R. Knutson, “Method and apparatus for imaging a physical parameter in turbid media using diffusive waves,” U.S. patent pending Application serial No. 07/722,823. (28June1991).

Kohn, P.

F. A. Grünbaum, P. Kohn, G. A. Latham, J. R. Singer, J. P. Zubelli, “Diffusive tomography,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 232–238 (1991).

Kruger, R. A.

Kumar, C.

W. Cui, C. Kumar, B. Chance, “Experimental study of migration depth for the photons measured at sample surface,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 180–191 (1991).

Lakowicz, J. R.

J. R. Lakowicz, K. W. Berndt, “Lifetime-selective fluorescence imaging using an rf phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
[CrossRef]

J. R. Lakowicz, K. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166, 246–252 (1990).
[CrossRef]

J. R. Lakowicz, K. W. Berndt, M. L. Johnson, “Photon migration in scattering media and tissue,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1204, 468–480 (1990).

K. W. Berndt, J. R. Lakowicz, “Detection and localization of absorbers in scattering media using frequency-domain principles,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 149–160 (1991).

Latham, G. A.

F. A. Grünbaum, P. Kohn, G. A. Latham, J. R. Singer, J. P. Zubelli, “Diffusive tomography,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 232–238 (1991).

Lauterbur, P. C.

P. C. Lauterbur, “Image formation by induced local interactions: examples employing nuclear magnetic resonance,” Nature (London) 242, 190–191 (1973).
[CrossRef]

Leigh, J.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

J. Haselgrove, J. Leigh, C. Yee, N.-G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of photon migration in non-infinite highly scattering media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 30–41 (1991).

Leigh, J. S.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Levy, W.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Liu, F.

K. M. Yoo, F. Liu, R. R. Alfano, “Photon migration in random media: angle and time resolved studies,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1204, 492–498 (1990).

Liu, Y.

L. Wang, Y. Liu, P. P. Ho, R. R. Alfano, “Ballistic imaging of biomedical samples using picosecond optical Kerr gate,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 97–101 (1991).

Mantulin, W. W.

J. Fishkin, E. Gratton, M. J. van de Ven, W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 1–14 (1991).

E. Gratton, W. W. Mantulin, M. J. van de Ven, J. B. Fishkin, M. B. Maris, B. Chance, “Imaging of tissues using intensity-modulated near-infrared light,” submitted to Science.

Maris, M.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

J. Haselgrove, J. Leigh, C. Yee, N.-G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of photon migration in non-infinite highly scattering media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 30–41 (1991).

Maris, M. B.

E. Gratton, W. W. Mantulin, M. J. van de Ven, J. B. Fishkin, M. B. Maris, B. Chance, “Imaging of tissues using intensity-modulated near-infrared light,” submitted to Science.

McCullyy, K.

B. Chance, S. Nioka, J. Kent, K. McCullyy, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Miyake, H.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Nioka, S.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Kent, K. McCullyy, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Nossal, R.

Patterson, M. S.

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

S. F. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

Schmitt, J. M.

Sevick, E. M.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

E. M. Sevick, B. Chance, “Photon migration in a model of the head measured using time- and frequency-domain techniques: potentials of spectroscopy and imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 84–96 (1991).

Singer, J. R.

F. A. Grünbaum, P. Kohn, G. A. Latham, J. R. Singer, J. P. Zubelli, “Diffusive tomography,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 232–238 (1991).

Smith, D. S.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

van de Ven, M.

E. Gratton, M. van de Ven, “A superheterodyning microwave phase fluorometer,” Biophys. J. 57, 378 (1990).

van de Ven, M. J.

J. Fishkin, E. Gratton, M. J. van de Ven, W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 1–14 (1991).

E. Gratton, W. W. Mantulin, M. J. van de Ven, J. B. Fishkin, M. B. Maris, B. Chance, “Imaging of tissues using intensity-modulated near-infrared light,” submitted to Science.

van der Zee, P.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 204–215 (1991).

Wang, L.

L. Wang, Y. Liu, P. P. Ho, R. R. Alfano, “Ballistic imaging of biomedical samples using picosecond optical Kerr gate,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 97–101 (1991).

Wang, N.-G.

J. Haselgrove, J. Leigh, C. Yee, N.-G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of photon migration in non-infinite highly scattering media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 30–41 (1991).

Weiss, G. H.

Wilson, B. C.

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

S. F. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

Wong, K. S.

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Yee, C.

J. Haselgrove, J. Leigh, C. Yee, N.-G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of photon migration in non-infinite highly scattering media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 30–41 (1991).

Yoo, K. M.

K. M. Yoo, F. Liu, R. R. Alfano, “Photon migration in random media: angle and time resolved studies,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1204, 492–498 (1990).

Yoshioka, H.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Young, M.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Zubelli, J. P.

F. A. Grünbaum, P. Kohn, G. A. Latham, J. R. Singer, J. P. Zubelli, “Diffusive tomography,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 232–238 (1991).

Anal. Biochem. (2)

B. Chance, S. Nioka, J. Kent, K. McCullyy, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Appl. Opt. (2)

Biophys. J. (1)

E. Gratton, M. van de Ven, “A superheterodyning microwave phase fluorometer,” Biophys. J. 57, 378 (1990).

Chem. Phys. Lett. (1)

J. R. Lakowicz, K. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166, 246–252 (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Med. Phys. (1)

S. F. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

Nature (London) (1)

P. C. Lauterbur, “Image formation by induced local interactions: examples employing nuclear magnetic resonance,” Nature (London) 242, 190–191 (1973).
[CrossRef]

Phys. Med. Biol. (1)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

J. R. Lakowicz, K. W. Berndt, “Lifetime-selective fluorescence imaging using an rf phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
[CrossRef]

Other (14)

J. Haselgrove, J. Leigh, C. Yee, N.-G. Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of photon migration in non-infinite highly scattering media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 30–41 (1991).

E. M. Sevick, B. Chance, “Photon migration in a model of the head measured using time- and frequency-domain techniques: potentials of spectroscopy and imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 84–96 (1991).

J. Crank, The Mathematics of Diffusion (Oxford U. Press, London, 1975), pp. 141–144.

E. Gratton, W. W. Mantulin, M. J. van de Ven, J. B. Fishkin, M. B. Maris, B. Chance, “Imaging of tissues using intensity-modulated near-infrared light,” submitted to Science.

S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 204–215 (1991).

W. Cui, C. Kumar, B. Chance, “Experimental study of migration depth for the photons measured at sample surface,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 180–191 (1991).

K. W. Berndt, J. R. Lakowicz, “Detection and localization of absorbers in scattering media using frequency-domain principles,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 149–160 (1991).

L. Wang, Y. Liu, P. P. Ho, R. R. Alfano, “Ballistic imaging of biomedical samples using picosecond optical Kerr gate,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 97–101 (1991).

K. M. Yoo, F. Liu, R. R. Alfano, “Photon migration in random media: angle and time resolved studies,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1204, 492–498 (1990).

J. R. Knutson, “Some prospects for adapting fluorescence instrumentation,” in Photon Migration in Tissues, B. Chance, ed. (Plenum, New York, 1990), pp. 43–51.

F. A. Grünbaum, P. Kohn, G. A. Latham, J. R. Singer, J. P. Zubelli, “Diffusive tomography,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 232–238 (1991).

J. Fishkin, E. Gratton, M. J. van de Ven, W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 1–14 (1991).

A. Knüttel, J. R. Knutson, “Method and apparatus for imaging a physical parameter in turbid media using diffusive waves,” U.S. patent pending Application serial No. 07/722,823. (28June1991).

J. R. Lakowicz, K. W. Berndt, M. L. Johnson, “Photon migration in scattering media and tissue,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1204, 468–480 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental arrangement for spatial localization of a body (B) by interfering photon-density waves. The components are M’s, mirror; BS’s, beam splitter; V ND, variable neutral-density filter; Pr, prism; L, relay lens; A, aperture; PMT, photomultiplier tube; and PD, photodiode.

Fig. 2
Fig. 2

Plots of magnitude and phase data induced by an absorbing body (absorption coefficient: μa2 = 0.175 mm−1); its center moved in each dimension of the source–detector plane. The experimental conditions and normalization procedures are described in the text. (a) Magnitude (2× magnification), (b) phase, recorded in the destructive interference mode, (c) magnitude plotted as the difference between the measured signal and the (highest) signal at maximum depth (22.5 mm), and (d) phase (referenced to the phase at maximum depth) recorded in the constructive interference mode.

Fig. 3
Fig. 3

(a) Magnitude and (b) phase versus depth location of the absorbing body with μa2 = 0.175 mm−1. The center of the body was positioned in the source–detector plane at the lateral position of 20 mm (from the detector). The plots for destructive, constructive interference, and single (outer) beam are shown in each figure.

Fig. 4
Fig. 4

(a) Magnitude and (b) phase versus depth location of the absorbing body with its center in the source–detector plane and 10 mm parallel to this plane (destructive interference). The lateral position is 20 mm from the detector. The absorption coefficient is μa1 = 0.035 mm−1.

Fig. 5
Fig. 5

Experimental and simulated (a) magnitude and (b) phase data versus depth location of the absorbing body for low- and high-absorption coefficients (μa1 = 0.035 mm−1 and μa2 = 0.175 mm−1). The destructive and constructive interference conditions were applied. The in-plane lateral position of the body center was 20 mm from the detector.

Fig. 6
Fig. 6

Experimental and simulated (a) magnitude and (b) phase data versus depth location of the absorbing body for two different modulation frequencies. The destructive interference data were obtained with the body’s absorption coefficient of μa2 = 0.175 mm−1. The in-plane lateral position was 20 mm from the detector.

Fig. 7
Fig. 7

Two-dimensional data of Figs. 2(a) and 2(b) in a polar coordinate representation. (a) Destructive-interference mode and (b) constructive-interference mode. The points plotted for each lateral position are the magnitude–phase results as a function of the depth of the absorbing body. The direction of increasing depth is indicated by arrows.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

1 c n t Φ ( r , t ) D 2 Φ ( r , t ) + [ μ a b + μ a ( r ) ] Φ ( r , t ) = S ( r , t ) ,
D = 1 3 ( μ a b + μ s ) .
Φ i j k t + 1 = c n S i j k ( t P ) Δ t + Φ i j k t + α ( δ x 2 Φ i j k t + δ y 2 Φ i j k t + δ z 2 Φ i j k t ) c n Δ t ( μ a b + μ a , i j k ) Φ i j k t ,
δ x 2 Φ i j k t = Φ i + 1 , j k t 2 Φ i j k t + Φ i 1 , j k t , δ y 2 Φ i j k t = Φ i j + 1 , k t 2 Φ i j k t + Φ i j 1 , k t , δ z 2 Φ i j k t = Φ i j , k + 1 t 2 Φ i j k t + Φ i j , k 1 t .
α = c n D Δ 3 Δ t < 1 6

Metrics