Abstract

Temporally resolved temperature imaging of a fuel jet in a hot, nonoxidizing supersonic cross flow is described. The temperature measurements are obtained with two lasers and two intensified cameras, with a two-line ratio of planar laser-induced fluorescence from nitric oxide, seeded either in the jet or in both the jet and the cross flow. Diagnostic issues related to the application of the two-line technique in high-speed combustion flows are addressed and include temperature sensitivity, transition selection, measurement resolution, fluorescence lifetime, temporal resolution, and intensifier and camera dynamic-range limitations. Single-shot and frame-averaged side-view temperature images of the flow field are presented, and the measurement uncertainties, which are dominated by photon statistical noise and pulse-to-pulse laser fluctuations, are discussed.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Hanson, “Combustion diagnostics: planar imaging techniques,” in Twenty-first Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 1677–1691.
  2. R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
    [CrossRef]
  3. R. J. Cattolica, D. A. Stephenson, “Two-dimensional imaging of flame temperature using laser-induced fluorescence,” in Dynamics of Flames and Reactive Systems, J. R. Bowen, N. Manson, A. K. Oppenheim, R. I. Soloukhin, eds., Vol. 95 of Progress in Aeronautics and Astronautics Series (American Institute of Aeronautics and Astronautics, Washington, D.C., 1984), pp. 714–721.
  4. P. H. Paul, R. K. Hanson, “Applications of planar laser-induced fluorescence imaging diagnostics to reacting flows,” in Technical Digest of the 26th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1990), paper 90–1844.
  5. M. G. Allen, S. J. Davis, K. Donohue, “Planar measurements of instantaneous species and temperature distributions in reacting flows: a novel approach to ground testing instrumentation,” in Technical Digest of the 26th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1990), paper 90–2383.
  6. P. H. Paul, U. E. Meier, R. K. Hanson, “Single-shot, multiple-camera planar laser-induced fluorescence imaging in gaseous flows,” in Technical Digest of the 29th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), paper 90–0459.
  7. J. M. Seitzman, J. L. Palmer, A. L. Antonio, R. K. Hanson, P. A. DeBarber, C. F. Hess, “Instantaneous planar thermometry of shock heated flows using PLIF of OH,” in Technical Digest of the 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper 93–0802.
  8. M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative imaging of temperature fields in air using planar laser-induced fluorescence of O2,” Opt. Lett. 12, 75–77 (1987).
    [CrossRef] [PubMed]
  9. R. J. Hartfield, S. D. Hollo, J. C. McDaniel, “Planar temperature measurement in compressible flows using laser-induced iodine fluorescence,” Opt. Lett. 16, 106–108 (1991).
    [CrossRef] [PubMed]
  10. T. Ni-Imi, T. Fujimoto, N. Shimizu, “Method for planar measurement of temperature in compressible flow using two-line laser-induced iodine fluorescence,” Opt. Lett. 15, 918–921 (1990).
    [CrossRef] [PubMed]
  11. J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
    [CrossRef] [PubMed]
  12. B. K. McMillin, J. L. Palmer, R. K. Hanson, “Two-dimensional temperature measurements of shock tube flows using planar laser-induced fluorescence imaging of nitric oxide,” in Technical Digest of the 22nd Fluid Dynamics, Plasma Dynamics & Lasers Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), paper 91–1670.
  13. M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” in Technical Digest of the 30th Aerospace Sciences Meeting (American Aeronautics and Astronautics, Washington, D.C., 1992), paper 92–0137.
  14. J. L. Palmer, B. K. McMillin, R. K. Hanson, “Planar laser-induced fluorescence imaging of velocity and temperature in shock-tunnel free-jet flow,” in Technical Digest of the 30th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1992), paper 92–0762.
  15. M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases using planar laser-induced fluorescence imaging of NO,” Appl. Opt. (to be published).
  16. R. Cattolica, “OH rotational temperature from two-line laser-excited fluorescence,” Appl. Opt. 20, 1156–1166 (1981).
    [CrossRef] [PubMed]
  17. K. P. Gross, R. L. McKenzie, “Measurements of fluctuating temperatures in a supersonic turbulent flow using laser-induced fluorescence,” AIAA J. 23, 1932–1936 (1985).
    [CrossRef]
  18. M. Slack, A. Grillo, “Investigation of hydrogen–air ignition sensitized by nitric oxide and nitrogen dioxide,” NASA Rep. CR-2896 (Grumman Aerospace Corporation, Bethpage, N.Y., October1977).
  19. N. M. Laurendeau, “Temperature measurements by light-scattering methods,” Prog. in Energy Combust. Sci. 14, 147–170 (1988).
    [CrossRef]
  20. I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO (A2∑+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
    [CrossRef]
  21. G. F. Nutt, S. C. Haydon, A. I. McIntosh, “Measurement of electronic quenching rates in nitric oxide using two-photon spectroscopy,” Chem. Phys. Let. 62, 402–404 (1979).
    [CrossRef]
  22. T. J. McGee, G. E. Miller, J. Burris, T. J. McIlrath, “Fluorescence branching ratios from the A2∑+, (v′ = 0) state of NO,” J. Quant. Spectrosc. Radiat. Transfer 29, 333–338 (1983).
    [CrossRef]
  23. B. K. McMillin, “Instantaneous two-line PLIF temperature imaging of nitric oxide in supersonic mixing and combustion flow fields,” Ph. D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1993).
  24. J. A. Gray, P. H. Paul, J. L. Durant, J. W. Thoman, “Collisional electronic quenching of NO (A2∑+) measured at high temperatures,” in Technical Digest of the 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper 93–0924.
  25. I. van Cruyningen, A. Lozano, R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10, 41–49 (1990).
    [CrossRef]
  26. M. P. Lee, B. K. McMillin, J. L. Palmer, R. K. Hanson, “Planar fluorescence imaging of a transverse jet in a supersonic cross flow,” J. Propul. Power 8, 729–735 (1992).
    [CrossRef]
  27. J. E. Broadwell, M. G. Mungal, “Large-scale structures and molecular mixing,” Phys. Fluids A 3, 1193–1206 (1991).
    [CrossRef]
  28. B. K. McMillin, J. L. Palmer, J. M. Seitzman, R. K. Hanson, “Two-line instantaneous temperature imaging of NO in a SCRAMJET model flow field,” in Technical Digest of the 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper 93–0044.

1992

M. P. Lee, B. K. McMillin, J. L. Palmer, R. K. Hanson, “Planar fluorescence imaging of a transverse jet in a supersonic cross flow,” J. Propul. Power 8, 729–735 (1992).
[CrossRef]

1991

1990

T. Ni-Imi, T. Fujimoto, N. Shimizu, “Method for planar measurement of temperature in compressible flow using two-line laser-induced iodine fluorescence,” Opt. Lett. 15, 918–921 (1990).
[CrossRef] [PubMed]

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

I. van Cruyningen, A. Lozano, R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10, 41–49 (1990).
[CrossRef]

1988

N. M. Laurendeau, “Temperature measurements by light-scattering methods,” Prog. in Energy Combust. Sci. 14, 147–170 (1988).
[CrossRef]

1987

1985

J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
[CrossRef] [PubMed]

K. P. Gross, R. L. McKenzie, “Measurements of fluctuating temperatures in a supersonic turbulent flow using laser-induced fluorescence,” AIAA J. 23, 1932–1936 (1985).
[CrossRef]

1983

T. J. McGee, G. E. Miller, J. Burris, T. J. McIlrath, “Fluorescence branching ratios from the A2∑+, (v′ = 0) state of NO,” J. Quant. Spectrosc. Radiat. Transfer 29, 333–338 (1983).
[CrossRef]

1982

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO (A2∑+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
[CrossRef]

1981

1979

G. F. Nutt, S. C. Haydon, A. I. McIntosh, “Measurement of electronic quenching rates in nitric oxide using two-photon spectroscopy,” Chem. Phys. Let. 62, 402–404 (1979).
[CrossRef]

Allen, M. G.

M. G. Allen, S. J. Davis, K. Donohue, “Planar measurements of instantaneous species and temperature distributions in reacting flows: a novel approach to ground testing instrumentation,” in Technical Digest of the 26th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1990), paper 90–2383.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” in Technical Digest of the 30th Aerospace Sciences Meeting (American Aeronautics and Astronautics, Washington, D.C., 1992), paper 92–0137.

Antonio, A. L.

J. M. Seitzman, J. L. Palmer, A. L. Antonio, R. K. Hanson, P. A. DeBarber, C. F. Hess, “Instantaneous planar thermometry of shock heated flows using PLIF of OH,” in Technical Digest of the 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper 93–0802.

Broadwell, J. E.

J. E. Broadwell, M. G. Mungal, “Large-scale structures and molecular mixing,” Phys. Fluids A 3, 1193–1206 (1991).
[CrossRef]

Burris, J.

T. J. McGee, G. E. Miller, J. Burris, T. J. McIlrath, “Fluorescence branching ratios from the A2∑+, (v′ = 0) state of NO,” J. Quant. Spectrosc. Radiat. Transfer 29, 333–338 (1983).
[CrossRef]

Cattolica, R.

Cattolica, R. J.

R. J. Cattolica, D. A. Stephenson, “Two-dimensional imaging of flame temperature using laser-induced fluorescence,” in Dynamics of Flames and Reactive Systems, J. R. Bowen, N. Manson, A. K. Oppenheim, R. I. Soloukhin, eds., Vol. 95 of Progress in Aeronautics and Astronautics Series (American Institute of Aeronautics and Astronautics, Washington, D.C., 1984), pp. 714–721.

Davis, S. J.

M. G. Allen, S. J. Davis, K. Donohue, “Planar measurements of instantaneous species and temperature distributions in reacting flows: a novel approach to ground testing instrumentation,” in Technical Digest of the 26th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1990), paper 90–2383.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” in Technical Digest of the 30th Aerospace Sciences Meeting (American Aeronautics and Astronautics, Washington, D.C., 1992), paper 92–0137.

DeBarber, P. A.

J. M. Seitzman, J. L. Palmer, A. L. Antonio, R. K. Hanson, P. A. DeBarber, C. F. Hess, “Instantaneous planar thermometry of shock heated flows using PLIF of OH,” in Technical Digest of the 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper 93–0802.

Donohue, K.

M. G. Allen, S. J. Davis, K. Donohue, “Planar measurements of instantaneous species and temperature distributions in reacting flows: a novel approach to ground testing instrumentation,” in Technical Digest of the 26th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1990), paper 90–2383.

Durant, J. L.

J. A. Gray, P. H. Paul, J. L. Durant, J. W. Thoman, “Collisional electronic quenching of NO (A2∑+) measured at high temperatures,” in Technical Digest of the 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper 93–0924.

Foutter, R. R.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” in Technical Digest of the 30th Aerospace Sciences Meeting (American Aeronautics and Astronautics, Washington, D.C., 1992), paper 92–0137.

Fujimoto, T.

Gray, J. A.

J. A. Gray, P. H. Paul, J. L. Durant, J. W. Thoman, “Collisional electronic quenching of NO (A2∑+) measured at high temperatures,” in Technical Digest of the 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper 93–0924.

Grillo, A.

M. Slack, A. Grillo, “Investigation of hydrogen–air ignition sensitized by nitric oxide and nitrogen dioxide,” NASA Rep. CR-2896 (Grumman Aerospace Corporation, Bethpage, N.Y., October1977).

Gross, K. P.

K. P. Gross, R. L. McKenzie, “Measurements of fluctuating temperatures in a supersonic turbulent flow using laser-induced fluorescence,” AIAA J. 23, 1932–1936 (1985).
[CrossRef]

Hanson, R. K.

M. P. Lee, B. K. McMillin, J. L. Palmer, R. K. Hanson, “Planar fluorescence imaging of a transverse jet in a supersonic cross flow,” J. Propul. Power 8, 729–735 (1992).
[CrossRef]

I. van Cruyningen, A. Lozano, R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10, 41–49 (1990).
[CrossRef]

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative imaging of temperature fields in air using planar laser-induced fluorescence of O2,” Opt. Lett. 12, 75–77 (1987).
[CrossRef] [PubMed]

J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
[CrossRef] [PubMed]

J. M. Seitzman, J. L. Palmer, A. L. Antonio, R. K. Hanson, P. A. DeBarber, C. F. Hess, “Instantaneous planar thermometry of shock heated flows using PLIF of OH,” in Technical Digest of the 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper 93–0802.

R. K. Hanson, “Combustion diagnostics: planar imaging techniques,” in Twenty-first Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 1677–1691.

P. H. Paul, R. K. Hanson, “Applications of planar laser-induced fluorescence imaging diagnostics to reacting flows,” in Technical Digest of the 26th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1990), paper 90–1844.

P. H. Paul, U. E. Meier, R. K. Hanson, “Single-shot, multiple-camera planar laser-induced fluorescence imaging in gaseous flows,” in Technical Digest of the 29th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), paper 90–0459.

J. L. Palmer, B. K. McMillin, R. K. Hanson, “Planar laser-induced fluorescence imaging of velocity and temperature in shock-tunnel free-jet flow,” in Technical Digest of the 30th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1992), paper 92–0762.

M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases using planar laser-induced fluorescence imaging of NO,” Appl. Opt. (to be published).

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Two-dimensional temperature measurements of shock tube flows using planar laser-induced fluorescence imaging of nitric oxide,” in Technical Digest of the 22nd Fluid Dynamics, Plasma Dynamics & Lasers Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), paper 91–1670.

B. K. McMillin, J. L. Palmer, J. M. Seitzman, R. K. Hanson, “Two-line instantaneous temperature imaging of NO in a SCRAMJET model flow field,” in Technical Digest of the 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper 93–0044.

Hartfield, R. J.

Haydon, S. C.

G. F. Nutt, S. C. Haydon, A. I. McIntosh, “Measurement of electronic quenching rates in nitric oxide using two-photon spectroscopy,” Chem. Phys. Let. 62, 402–404 (1979).
[CrossRef]

Hess, C. F.

J. M. Seitzman, J. L. Palmer, A. L. Antonio, R. K. Hanson, P. A. DeBarber, C. F. Hess, “Instantaneous planar thermometry of shock heated flows using PLIF of OH,” in Technical Digest of the 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper 93–0802.

Hollo, S. D.

Kychakoff, G.

Laudenslager, J. B.

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO (A2∑+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
[CrossRef]

Laurendeau, N. M.

N. M. Laurendeau, “Temperature measurements by light-scattering methods,” Prog. in Energy Combust. Sci. 14, 147–170 (1988).
[CrossRef]

Lee, M. P.

M. P. Lee, B. K. McMillin, J. L. Palmer, R. K. Hanson, “Planar fluorescence imaging of a transverse jet in a supersonic cross flow,” J. Propul. Power 8, 729–735 (1992).
[CrossRef]

M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative imaging of temperature fields in air using planar laser-induced fluorescence of O2,” Opt. Lett. 12, 75–77 (1987).
[CrossRef] [PubMed]

M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases using planar laser-induced fluorescence imaging of NO,” Appl. Opt. (to be published).

Legner, H. H.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” in Technical Digest of the 30th Aerospace Sciences Meeting (American Aeronautics and Astronautics, Washington, D.C., 1992), paper 92–0137.

Lozano, A.

I. van Cruyningen, A. Lozano, R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10, 41–49 (1990).
[CrossRef]

McDaniel, J. C.

McDermid, I. S.

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO (A2∑+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
[CrossRef]

McGee, T. J.

T. J. McGee, G. E. Miller, J. Burris, T. J. McIlrath, “Fluorescence branching ratios from the A2∑+, (v′ = 0) state of NO,” J. Quant. Spectrosc. Radiat. Transfer 29, 333–338 (1983).
[CrossRef]

McIlrath, T. J.

T. J. McGee, G. E. Miller, J. Burris, T. J. McIlrath, “Fluorescence branching ratios from the A2∑+, (v′ = 0) state of NO,” J. Quant. Spectrosc. Radiat. Transfer 29, 333–338 (1983).
[CrossRef]

McIntosh, A. I.

G. F. Nutt, S. C. Haydon, A. I. McIntosh, “Measurement of electronic quenching rates in nitric oxide using two-photon spectroscopy,” Chem. Phys. Let. 62, 402–404 (1979).
[CrossRef]

McKenzie, R. L.

K. P. Gross, R. L. McKenzie, “Measurements of fluctuating temperatures in a supersonic turbulent flow using laser-induced fluorescence,” AIAA J. 23, 1932–1936 (1985).
[CrossRef]

McMillin, B. K.

M. P. Lee, B. K. McMillin, J. L. Palmer, R. K. Hanson, “Planar fluorescence imaging of a transverse jet in a supersonic cross flow,” J. Propul. Power 8, 729–735 (1992).
[CrossRef]

B. K. McMillin, “Instantaneous two-line PLIF temperature imaging of nitric oxide in supersonic mixing and combustion flow fields,” Ph. D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1993).

M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases using planar laser-induced fluorescence imaging of NO,” Appl. Opt. (to be published).

J. L. Palmer, B. K. McMillin, R. K. Hanson, “Planar laser-induced fluorescence imaging of velocity and temperature in shock-tunnel free-jet flow,” in Technical Digest of the 30th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1992), paper 92–0762.

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Two-dimensional temperature measurements of shock tube flows using planar laser-induced fluorescence imaging of nitric oxide,” in Technical Digest of the 22nd Fluid Dynamics, Plasma Dynamics & Lasers Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), paper 91–1670.

B. K. McMillin, J. L. Palmer, J. M. Seitzman, R. K. Hanson, “Two-line instantaneous temperature imaging of NO in a SCRAMJET model flow field,” in Technical Digest of the 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper 93–0044.

Meier, U. E.

P. H. Paul, U. E. Meier, R. K. Hanson, “Single-shot, multiple-camera planar laser-induced fluorescence imaging in gaseous flows,” in Technical Digest of the 29th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), paper 90–0459.

Miller, G. E.

T. J. McGee, G. E. Miller, J. Burris, T. J. McIlrath, “Fluorescence branching ratios from the A2∑+, (v′ = 0) state of NO,” J. Quant. Spectrosc. Radiat. Transfer 29, 333–338 (1983).
[CrossRef]

Mungal, M. G.

J. E. Broadwell, M. G. Mungal, “Large-scale structures and molecular mixing,” Phys. Fluids A 3, 1193–1206 (1991).
[CrossRef]

Ni-Imi, T.

Nutt, G. F.

G. F. Nutt, S. C. Haydon, A. I. McIntosh, “Measurement of electronic quenching rates in nitric oxide using two-photon spectroscopy,” Chem. Phys. Let. 62, 402–404 (1979).
[CrossRef]

Palmer, J. L.

M. P. Lee, B. K. McMillin, J. L. Palmer, R. K. Hanson, “Planar fluorescence imaging of a transverse jet in a supersonic cross flow,” J. Propul. Power 8, 729–735 (1992).
[CrossRef]

J. L. Palmer, B. K. McMillin, R. K. Hanson, “Planar laser-induced fluorescence imaging of velocity and temperature in shock-tunnel free-jet flow,” in Technical Digest of the 30th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1992), paper 92–0762.

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Two-dimensional temperature measurements of shock tube flows using planar laser-induced fluorescence imaging of nitric oxide,” in Technical Digest of the 22nd Fluid Dynamics, Plasma Dynamics & Lasers Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), paper 91–1670.

J. M. Seitzman, J. L. Palmer, A. L. Antonio, R. K. Hanson, P. A. DeBarber, C. F. Hess, “Instantaneous planar thermometry of shock heated flows using PLIF of OH,” in Technical Digest of the 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper 93–0802.

B. K. McMillin, J. L. Palmer, J. M. Seitzman, R. K. Hanson, “Two-line instantaneous temperature imaging of NO in a SCRAMJET model flow field,” in Technical Digest of the 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper 93–0044.

Parker, T. E.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” in Technical Digest of the 30th Aerospace Sciences Meeting (American Aeronautics and Astronautics, Washington, D.C., 1992), paper 92–0137.

Paul, P. H.

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative imaging of temperature fields in air using planar laser-induced fluorescence of O2,” Opt. Lett. 12, 75–77 (1987).
[CrossRef] [PubMed]

P. H. Paul, R. K. Hanson, “Applications of planar laser-induced fluorescence imaging diagnostics to reacting flows,” in Technical Digest of the 26th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1990), paper 90–1844.

P. H. Paul, U. E. Meier, R. K. Hanson, “Single-shot, multiple-camera planar laser-induced fluorescence imaging in gaseous flows,” in Technical Digest of the 29th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), paper 90–0459.

J. A. Gray, P. H. Paul, J. L. Durant, J. W. Thoman, “Collisional electronic quenching of NO (A2∑+) measured at high temperatures,” in Technical Digest of the 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper 93–0924.

Rawlins, W. T.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” in Technical Digest of the 30th Aerospace Sciences Meeting (American Aeronautics and Astronautics, Washington, D.C., 1992), paper 92–0137.

Reinecke, W. G.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” in Technical Digest of the 30th Aerospace Sciences Meeting (American Aeronautics and Astronautics, Washington, D.C., 1992), paper 92–0137.

Seitzman, J. M.

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
[CrossRef] [PubMed]

J. M. Seitzman, J. L. Palmer, A. L. Antonio, R. K. Hanson, P. A. DeBarber, C. F. Hess, “Instantaneous planar thermometry of shock heated flows using PLIF of OH,” in Technical Digest of the 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper 93–0802.

B. K. McMillin, J. L. Palmer, J. M. Seitzman, R. K. Hanson, “Two-line instantaneous temperature imaging of NO in a SCRAMJET model flow field,” in Technical Digest of the 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper 93–0044.

Shimizu, N.

Slack, M.

M. Slack, A. Grillo, “Investigation of hydrogen–air ignition sensitized by nitric oxide and nitrogen dioxide,” NASA Rep. CR-2896 (Grumman Aerospace Corporation, Bethpage, N.Y., October1977).

Stephenson, D. A.

R. J. Cattolica, D. A. Stephenson, “Two-dimensional imaging of flame temperature using laser-induced fluorescence,” in Dynamics of Flames and Reactive Systems, J. R. Bowen, N. Manson, A. K. Oppenheim, R. I. Soloukhin, eds., Vol. 95 of Progress in Aeronautics and Astronautics Series (American Institute of Aeronautics and Astronautics, Washington, D.C., 1984), pp. 714–721.

Thoman, J. W.

J. A. Gray, P. H. Paul, J. L. Durant, J. W. Thoman, “Collisional electronic quenching of NO (A2∑+) measured at high temperatures,” in Technical Digest of the 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper 93–0924.

van Cruyningen, I.

I. van Cruyningen, A. Lozano, R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10, 41–49 (1990).
[CrossRef]

AIAA J.

K. P. Gross, R. L. McKenzie, “Measurements of fluctuating temperatures in a supersonic turbulent flow using laser-induced fluorescence,” AIAA J. 23, 1932–1936 (1985).
[CrossRef]

Appl. Opt.

Appl. Phys. B

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

Chem. Phys. Let.

G. F. Nutt, S. C. Haydon, A. I. McIntosh, “Measurement of electronic quenching rates in nitric oxide using two-photon spectroscopy,” Chem. Phys. Let. 62, 402–404 (1979).
[CrossRef]

Exp. Fluids

I. van Cruyningen, A. Lozano, R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10, 41–49 (1990).
[CrossRef]

J. Propul. Power

M. P. Lee, B. K. McMillin, J. L. Palmer, R. K. Hanson, “Planar fluorescence imaging of a transverse jet in a supersonic cross flow,” J. Propul. Power 8, 729–735 (1992).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

T. J. McGee, G. E. Miller, J. Burris, T. J. McIlrath, “Fluorescence branching ratios from the A2∑+, (v′ = 0) state of NO,” J. Quant. Spectrosc. Radiat. Transfer 29, 333–338 (1983).
[CrossRef]

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO (A2∑+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
[CrossRef]

Opt. Lett.

Phys. Fluids A

J. E. Broadwell, M. G. Mungal, “Large-scale structures and molecular mixing,” Phys. Fluids A 3, 1193–1206 (1991).
[CrossRef]

Prog. in Energy Combust. Sci.

N. M. Laurendeau, “Temperature measurements by light-scattering methods,” Prog. in Energy Combust. Sci. 14, 147–170 (1988).
[CrossRef]

Other

B. K. McMillin, J. L. Palmer, J. M. Seitzman, R. K. Hanson, “Two-line instantaneous temperature imaging of NO in a SCRAMJET model flow field,” in Technical Digest of the 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper 93–0044.

B. K. McMillin, “Instantaneous two-line PLIF temperature imaging of nitric oxide in supersonic mixing and combustion flow fields,” Ph. D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1993).

J. A. Gray, P. H. Paul, J. L. Durant, J. W. Thoman, “Collisional electronic quenching of NO (A2∑+) measured at high temperatures,” in Technical Digest of the 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper 93–0924.

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Two-dimensional temperature measurements of shock tube flows using planar laser-induced fluorescence imaging of nitric oxide,” in Technical Digest of the 22nd Fluid Dynamics, Plasma Dynamics & Lasers Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), paper 91–1670.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” in Technical Digest of the 30th Aerospace Sciences Meeting (American Aeronautics and Astronautics, Washington, D.C., 1992), paper 92–0137.

J. L. Palmer, B. K. McMillin, R. K. Hanson, “Planar laser-induced fluorescence imaging of velocity and temperature in shock-tunnel free-jet flow,” in Technical Digest of the 30th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1992), paper 92–0762.

M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases using planar laser-induced fluorescence imaging of NO,” Appl. Opt. (to be published).

R. J. Cattolica, D. A. Stephenson, “Two-dimensional imaging of flame temperature using laser-induced fluorescence,” in Dynamics of Flames and Reactive Systems, J. R. Bowen, N. Manson, A. K. Oppenheim, R. I. Soloukhin, eds., Vol. 95 of Progress in Aeronautics and Astronautics Series (American Institute of Aeronautics and Astronautics, Washington, D.C., 1984), pp. 714–721.

P. H. Paul, R. K. Hanson, “Applications of planar laser-induced fluorescence imaging diagnostics to reacting flows,” in Technical Digest of the 26th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1990), paper 90–1844.

M. G. Allen, S. J. Davis, K. Donohue, “Planar measurements of instantaneous species and temperature distributions in reacting flows: a novel approach to ground testing instrumentation,” in Technical Digest of the 26th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1990), paper 90–2383.

P. H. Paul, U. E. Meier, R. K. Hanson, “Single-shot, multiple-camera planar laser-induced fluorescence imaging in gaseous flows,” in Technical Digest of the 29th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), paper 90–0459.

J. M. Seitzman, J. L. Palmer, A. L. Antonio, R. K. Hanson, P. A. DeBarber, C. F. Hess, “Instantaneous planar thermometry of shock heated flows using PLIF of OH,” in Technical Digest of the 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper 93–0802.

R. K. Hanson, “Combustion diagnostics: planar imaging techniques,” in Twenty-first Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 1677–1691.

M. Slack, A. Grillo, “Investigation of hydrogen–air ignition sensitized by nitric oxide and nitrogen dioxide,” NASA Rep. CR-2896 (Grumman Aerospace Corporation, Bethpage, N.Y., October1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the flow field showing the nominal flow conditions: Jet: 1% NO/19% CO/80% H2 at 300 K and 3.0 atm; M = 1, and D = 2. Cross flow: 0.1% NO/10% CO/N2 at 1260 K and 0.4 atm; M = 1.64.

Fig. 2
Fig. 2

(a) Variation of absorption width, collisional shift, and nominal overlap integral as a function of the mixture temperature; and (b) nominal overlap integral and its shot-to-shot standard deviation as a function of the mixture temperature.

Fig. 3
Fig. 3

Schematic diagram of the shock tube and PLIF-imaging facility.

Fig. 4
Fig. 4

Measured fluorescence ratio as a function of free stream temperature. The nominal pressure and temperature are noted in the legend, along with the range of scatter in the inferred temperature. The transitions used in these measurements were R1 + Q21(16.5) and Ql + P21(28.5), and the point at 300 K represents an average of 25 measurements.

Fig. 5
Fig. 5

Instantaneous temperature images of the jet in cross flow (a) with 0.1% NO and (b) without NO seeded in the free stream. Each image has been trimmed to 15 × 45 mm and shows approximately 18 jet diameters of the plume. Note that in (b), as no measurements were obtained in the free stream, the image was thresholded to remove the extraneous noise.

Fig. 6
Fig. 6

Fifteen-frame average-temperature images of the jet in cross flow (a) with 0.1% NO and (b) without NO seeded in the free stream. The images were trimmed to 15 × 45 mm and show approximately 18 jet diameters of the plume. Image (b) is a thresholded, conditioned average, which was conditioned on the presence of jet fluid. Again, no measurements were obtained in the free stream of (b).

Fig. 7
Fig. 7

Temperature cross sections at axial station x/D = 12. (a) Taken from the instantaneous temperature field shown in Fig. 5(a). (b) Taken from the 15-frame average-temperature field shown in Fig. 6(a). The profiles are relatively noisy in the free stream because of the low NO-seeding fraction, but they are much less noisy in the plume region because of a higher NO-seeding fraction. Hence the apparent temperature fluctuations in the free stream owe to noise, but the temperature fluctuations within the plume are primarily due to flow variations.

Fig. 8
Fig. 8

Estimated uncertainties due to shot noise in the instantaneous jet in cross-flow-temperature images: Δɛ12/k = 1531 K; T = 1260 K, nonoxidizing free stream with 0.1% NO.

Tables (1)

Tables Icon

Table 1 Estimated Worst-Case Systematic Errors Owing to Laser Absorption within the Jet Plume

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S f = B E g ( N , T ) f B ( T ) N abs V ϕ ( χ i , N , T ) η Ω 4 π ,
R 12 S f 1 S f 2 = C 12 B 1 E 1 f B 1 ( T ) g 1 ( N , T ) ϕ 1 ( χ i , N , T ) B 2 E 2 f B 2 ( T ) g 2 ( N , T ) ϕ 2 ( χ i , N , T ) ,
R 12 = C 12 exp ( - Δ ɛ 12 k T ) ,
δ T T = 1 ( Δ ɛ 12 / k T ) δ R 12 R 12 ,
δ R 12 R 12 = ( δ S f 1 S f 1 + δ S f 2 S f 2 ) 1 / 2 ,

Metrics