Abstract

A temperature correction of water vapor differential absorption coefficients for the CO2 transition line pairs (10R20, 10R18) and (10R20, 10R22) for temperatures between −0.5 °C and 20 °C is computed, with a reference temperature of 27 °C, from medium-range CO2 lidar field measurements. The empirical temperature correction, X(T), is fitted with the polynomial X(T) = a0 + a1 × T + a2 × T2. For the transition line pair (10R20, 10R18) the temperature dependence ranges from 1.62%/°C to 3.47%/°C, and the temperature correction for the transition line pair (10R20, 10R22) ranges from 1.32%/°C to 2.43%/°C.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Zanzottera, “Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere,” Crit. Rev. Anal. Chem. 21, 279–319 (1990).
    [CrossRef]
  2. W. B. Grant, “Water vapor absorption coefficients in the 8–13-μm spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990).
    [CrossRef] [PubMed]
  3. G. L. Loper, M. A. O’Neill, J. A. Gelbwachs, “Water-vapor continuum CO2 laser absorption spectra between 27 °C and −10 °C,” Appl. Opt. 22, 3701–3710 (1983).
    [CrossRef] [PubMed]
  4. J. Hinderling, M. W. Sigrist, F. K. Kneubuhl, “Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric window,” Infrared Phys. 27, 63–120 (1987).
    [CrossRef]
  5. D. B. Cohn, T. A. Watson, T. P. Moser, J. A. Fox, C. R. Swim, “Wavelength agile high repetition rate CO2 TEA laser,” in Proceedings of the Third International Defence Research Agency/National Aeronautics and Space Administration Conference on Long-Life CO2 Laser Technology, D. V. Willets, M. R. Harris, eds. (British Crown, Malvern, UK, 1992), pp. 221–232.
  6. J. Hinderling, M. W. Sigrist, F. K. Kneubuhl, “Pure rotational transitions of H2O molecules in the 8–14 μm atmospheric window,” Infrared Phys. 25, 491–496 (1985).
    [CrossRef]
  7. M. S. Shumate, R. T. Menzies, J. S. Margolis, L.-G. Rosengren, “Water vapor absorption of carbon dioxide laser radiation,” Appl. Opt. 15, 2480–2488 (1976).
    [CrossRef] [PubMed]
  8. J. C. Peterson, “A study of water vapor absorption at CO2 laser frequencies using a differential spectrophone and white cell,” Ph.D. dissertation (Ohio State University, Columbus, Ohio, 1978).
  9. R. M. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL atmospheric absorption line parameters compilation,” AFCRL Rep. TR-73-0096 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1973).
  10. W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033–3042 (1987).
    [CrossRef] [PubMed]

1990 (2)

E. Zanzottera, “Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere,” Crit. Rev. Anal. Chem. 21, 279–319 (1990).
[CrossRef]

W. B. Grant, “Water vapor absorption coefficients in the 8–13-μm spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990).
[CrossRef] [PubMed]

1987 (2)

J. Hinderling, M. W. Sigrist, F. K. Kneubuhl, “Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric window,” Infrared Phys. 27, 63–120 (1987).
[CrossRef]

W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033–3042 (1987).
[CrossRef] [PubMed]

1985 (1)

J. Hinderling, M. W. Sigrist, F. K. Kneubuhl, “Pure rotational transitions of H2O molecules in the 8–14 μm atmospheric window,” Infrared Phys. 25, 491–496 (1985).
[CrossRef]

1983 (1)

1976 (1)

Benedict, W. S.

R. M. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL atmospheric absorption line parameters compilation,” AFCRL Rep. TR-73-0096 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1973).

Brothers, A. M.

Burch, D. E.

R. M. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL atmospheric absorption line parameters compilation,” AFCRL Rep. TR-73-0096 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1973).

Calfee, R. F.

R. M. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL atmospheric absorption line parameters compilation,” AFCRL Rep. TR-73-0096 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1973).

Clough, S. A.

R. M. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL atmospheric absorption line parameters compilation,” AFCRL Rep. TR-73-0096 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1973).

Cohn, D. B.

D. B. Cohn, T. A. Watson, T. P. Moser, J. A. Fox, C. R. Swim, “Wavelength agile high repetition rate CO2 TEA laser,” in Proceedings of the Third International Defence Research Agency/National Aeronautics and Space Administration Conference on Long-Life CO2 Laser Technology, D. V. Willets, M. R. Harris, eds. (British Crown, Malvern, UK, 1992), pp. 221–232.

Fox, J. A.

D. B. Cohn, T. A. Watson, T. P. Moser, J. A. Fox, C. R. Swim, “Wavelength agile high repetition rate CO2 TEA laser,” in Proceedings of the Third International Defence Research Agency/National Aeronautics and Space Administration Conference on Long-Life CO2 Laser Technology, D. V. Willets, M. R. Harris, eds. (British Crown, Malvern, UK, 1992), pp. 221–232.

Fox, K.

R. M. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL atmospheric absorption line parameters compilation,” AFCRL Rep. TR-73-0096 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1973).

Garing, J. S.

R. M. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL atmospheric absorption line parameters compilation,” AFCRL Rep. TR-73-0096 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1973).

Gelbwachs, J. A.

Grant, W. B.

Hinderling, J.

J. Hinderling, M. W. Sigrist, F. K. Kneubuhl, “Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric window,” Infrared Phys. 27, 63–120 (1987).
[CrossRef]

J. Hinderling, M. W. Sigrist, F. K. Kneubuhl, “Pure rotational transitions of H2O molecules in the 8–14 μm atmospheric window,” Infrared Phys. 25, 491–496 (1985).
[CrossRef]

Kneubuhl, F. K.

J. Hinderling, M. W. Sigrist, F. K. Kneubuhl, “Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric window,” Infrared Phys. 27, 63–120 (1987).
[CrossRef]

J. Hinderling, M. W. Sigrist, F. K. Kneubuhl, “Pure rotational transitions of H2O molecules in the 8–14 μm atmospheric window,” Infrared Phys. 25, 491–496 (1985).
[CrossRef]

Loper, G. L.

Margolis, J. S.

McClatchey, R. M.

R. M. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL atmospheric absorption line parameters compilation,” AFCRL Rep. TR-73-0096 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1973).

Menzies, R. T.

Moser, T. P.

D. B. Cohn, T. A. Watson, T. P. Moser, J. A. Fox, C. R. Swim, “Wavelength agile high repetition rate CO2 TEA laser,” in Proceedings of the Third International Defence Research Agency/National Aeronautics and Space Administration Conference on Long-Life CO2 Laser Technology, D. V. Willets, M. R. Harris, eds. (British Crown, Malvern, UK, 1992), pp. 221–232.

O’Neill, M. A.

Peterson, J. C.

J. C. Peterson, “A study of water vapor absorption at CO2 laser frequencies using a differential spectrophone and white cell,” Ph.D. dissertation (Ohio State University, Columbus, Ohio, 1978).

Rosengren, L.-G.

Rothman, L. S.

R. M. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL atmospheric absorption line parameters compilation,” AFCRL Rep. TR-73-0096 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1973).

Shumate, M. S.

Sigrist, M. W.

J. Hinderling, M. W. Sigrist, F. K. Kneubuhl, “Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric window,” Infrared Phys. 27, 63–120 (1987).
[CrossRef]

J. Hinderling, M. W. Sigrist, F. K. Kneubuhl, “Pure rotational transitions of H2O molecules in the 8–14 μm atmospheric window,” Infrared Phys. 25, 491–496 (1985).
[CrossRef]

Swim, C. R.

D. B. Cohn, T. A. Watson, T. P. Moser, J. A. Fox, C. R. Swim, “Wavelength agile high repetition rate CO2 TEA laser,” in Proceedings of the Third International Defence Research Agency/National Aeronautics and Space Administration Conference on Long-Life CO2 Laser Technology, D. V. Willets, M. R. Harris, eds. (British Crown, Malvern, UK, 1992), pp. 221–232.

Tratt, D. M.

Watson, T. A.

D. B. Cohn, T. A. Watson, T. P. Moser, J. A. Fox, C. R. Swim, “Wavelength agile high repetition rate CO2 TEA laser,” in Proceedings of the Third International Defence Research Agency/National Aeronautics and Space Administration Conference on Long-Life CO2 Laser Technology, D. V. Willets, M. R. Harris, eds. (British Crown, Malvern, UK, 1992), pp. 221–232.

Zanzottera, E.

E. Zanzottera, “Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere,” Crit. Rev. Anal. Chem. 21, 279–319 (1990).
[CrossRef]

Appl. Opt. (4)

Crit. Rev. Anal. Chem. (1)

E. Zanzottera, “Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere,” Crit. Rev. Anal. Chem. 21, 279–319 (1990).
[CrossRef]

Infrared Phys. (2)

J. Hinderling, M. W. Sigrist, F. K. Kneubuhl, “Pure rotational transitions of H2O molecules in the 8–14 μm atmospheric window,” Infrared Phys. 25, 491–496 (1985).
[CrossRef]

J. Hinderling, M. W. Sigrist, F. K. Kneubuhl, “Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric window,” Infrared Phys. 27, 63–120 (1987).
[CrossRef]

Other (3)

D. B. Cohn, T. A. Watson, T. P. Moser, J. A. Fox, C. R. Swim, “Wavelength agile high repetition rate CO2 TEA laser,” in Proceedings of the Third International Defence Research Agency/National Aeronautics and Space Administration Conference on Long-Life CO2 Laser Technology, D. V. Willets, M. R. Harris, eds. (British Crown, Malvern, UK, 1992), pp. 221–232.

J. C. Peterson, “A study of water vapor absorption at CO2 laser frequencies using a differential spectrophone and white cell,” Ph.D. dissertation (Ohio State University, Columbus, Ohio, 1978).

R. M. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL atmospheric absorption line parameters compilation,” AFCRL Rep. TR-73-0096 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Percentage difference (PM/PL − 1) between water vapor partial pressure, PM, measured by a psychrometer and water vapor partial pressure, PL, computed from the lidar measurements with laser transition line pair (10R20, 10R18) as a function of dry-bulb temperature and the psychrometer water vapor partial pressure measurements. Asterisks denote the psychrometer measurements.

Fig. 2
Fig. 2

Percentage difference between PM and PL as in Fig. 1 but for lidar measurements with the laser transition line pair (10R20, 10R22).

Fig. 3
Fig. 3

Autocorrelation of water vapor partial pressure measured by the psychrometer (dotted curve) and cross-correlation between water vapor partial pressure computed from the lidar measurements with the transition line pair (10R20, 10R18) and the psychrometer measurements (solid curve).

Fig. 4
Fig. 4

Empirical temperature correction X(T) of the differential absorption coefficients for the transition line pair (10R20, 10R18) as a function of dry-bulb temperature.

Fig. 5
Fig. 5

Empirical temperature correction as in Fig. 4 but for the transition line pair (10R20, 10R22).

Fig. 6
Fig. 6

Cumulative temperature correction X(T) × (T0T) for the transition line pair (10R20, 10R18), shown by the solid curve, and for the transition line pair (10R20, 10R22), shown by the dashed curve, as a function of dry-bulb temperature.

Tables (1)

Tables Icon

Table 1 Temperature Correction of Water Vapor Absorption Coefficient Measurements

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P L ( T ) = ln [ S λ 2 ( T ) S λ 1 ( T ) ] 2 R [ α λ 1 ( T 0 ) - α λ 2 ( T 0 ) ] ,
α λ 1 ( T ) - α λ 2 ( T ) = [ α λ 1 ( T 0 ) - α λ 2 ( T 0 ) ] × [ 1 + X ( T ) × ( T - T 0 ) ] ,
X ( T ) = P L ( T ) P M ( T ) - 1 T - T 0 .
Δ X ( T ) = ln ( 1 ± 1 + ¯ ) P M ( T ) 2 R [ α λ 1 ( T ) - α λ 2 ( T ) ] ( T - T 0 ) .

Metrics