Abstract

A diode-laser-pumped Nd:YAG laser is frequency stabilized by locking its frequency-doubled output to the center of unsaturated (Doppler-broadened) transitions of the 127I2 molecule. The successive two-sample deviation of the laser frequency (root Allan variance) is kept below 5.67 kHz, or 2 parts in 1011 of the laser frequency, for averaging times between 10 ms and 40 s. This locking technique is simpler and requires less laser power than locking to Doppler-free lines.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kane, R. L. Byer, “Monolithic, unidirectional single mode ring laser,” Opt. Lett. 10, 65–67 (1985).
    [CrossRef] [PubMed]
  2. C. D. Nabors, A. D. Farinas, T. Day, S. T. Yang, E. K. Gustafson, R. L. Byer, “Injection locking of a 13-W cw Nd:YAG ring laser,” Opt. Lett. 14, 1189–1191 (1989).
    [CrossRef] [PubMed]
  3. Locking of Nd:YAG laser to the side of a Doppler-broadened line for communication applications was reported after the submission of this paper; see R. Heilmann, J. Kuschel, “Absolute frequency locking of diode-pumped Nd:YAG laser for application in free-space optical communication,” Electron. Lett. 29, 810–811 (1993).
    [CrossRef]
  4. B. L. Schumaker, “Scientific applications of frequency stabilized laser technology in space,” Jet Propulsion Laboratory Rep. 90-50 (Jet Propulsion Laboratory, Pasadena, Calif., 1990).
  5. R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Hucra, M. R. Pearlman, I. I. Shapiro, R. S. Taylor, P. F. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnston, B. F. Jones, L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
    [CrossRef]
  6. O. L. Colombo, B. F. Chao, “Global gravitational change from space in 2001,” in Seventh I.A.G. Symposium on Geodesy and Physics of the Earth, I.A.G. Symposium 112 (Springer-Verlag, New York, to be published).
  7. J. E. Faller, P. F. Bender, J. L. Hall, D. Hills, R. T. Stebbins, M. A. Vincent, “An antenna for laser gravitational wave observations in space,” Adv. Space Res. 9, 107–111 (1989).
    [CrossRef]
  8. A. A. Mak, S. G. Muravitsky, O. A. Orlov, V. I. Ustyugov, “New laser interferometry with long-term frequency stabilization at 1.06 μm onto molecular cesium standard,” in Interferometry ’89, Z. Jaroszewicz, M. Pluta, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1121, 478–484 (1989); O. A. Orlov, V. I. Ustyugov, “Molecular cesium reference for frequency stabilization of a 1.06 μm Nd:YAG laser,” Sov. Tech. Phys. Lett. 12, 120 (1986); K. Wallmeroth, R. Letterer, “Cesium frequency standard for lasers at λ = 1.06 μm,” Opt. Lett. 15, 812–813 (1990).
    [CrossRef] [PubMed]
  9. P. Fritschel, R. Weiss, “Frequency match of the Nd:YAG laser at 1.06 μm with a line in CO2,” Appl. Opt. 31, 1910–1912 (1992).
    [CrossRef] [PubMed]
  10. D. Shoemaker, A. Brillet, C. N. Man, O. Cregut, G. Kerr, “Frequency-stabilized laser-diode-pumped Nd:YAG laser,” Opt. Lett. 14, 609–611 (1989); T. Day, E. K. Gustafson, R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry–Perot cavity,” IEEE J. Quantum. Electron. 28, 1106–1116 (1992).
    [CrossRef] [PubMed]
  11. N. M. Sampas, E. K. Gustafson, R. L. Byer, “Long term stability of two diode-laser pumped non-planar ring lasers independently stabilized to two Fabry–Perot interferometers,” Opt. Lett. 12, 947–949 (1993).
    [CrossRef]
  12. R. L. Byer, R. L. Herbst, R. N. Fleming, “A broadly tunable IR source,” in Laser Spectroscopy, S. Haroche, M. Ducloy, E. Giacobino, eds. (Springer, New York, 1975), pp. 207–226.
    [CrossRef]
  13. S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu Petrun’kin, “Hyperfine structure of 127I2 absorption lines coinciding with the second harominc frequency of a YAG:Nd laser,” Opt. Spectrosc. 59, 414–416 (1985); “Frequency stabilization of a Nd:YAG laser by means of 127I2 absorption lines,” Sov. Tech. Phys. Lett. 11, 111–112 (1985).
  14. P. Esherick, A. Owyoung, “Polarization feedback stabilization of an injection-seeded Nd:YAG laser for spectroscopic applications,” J. Opt. Soc. Am. B 4, 41–47 (1987).
    [CrossRef]
  15. J. A. Harrison, M. Zahedi, J. W. Nibler, “Use of seeded Nd:YAG lasers for high resolution spectroscopy,” Opt. Lett. 18, 149–151 (1993).
    [CrossRef] [PubMed]
  16. A. Arie, S. Schiller, E. K. Gustafson, R. L. Byer, “Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine,” Opt. Lett. 17, 1204–1206 (1992).
    [CrossRef] [PubMed]
  17. A. Arie, R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993).
    [CrossRef]
  18. W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
    [CrossRef]
  19. D. C. Gerstenberger, G. E. Tye, R. W. Wallace, “Efficient second-harmonic conversion of cw single-frequency Nd:YAG laser light by frequency locking to a monolithic ring frequency doubler,” Opt. Lett. 16, 992–994 (1991).
    [CrossRef] [PubMed]
  20. S. Gerstenkorn, P. Luc, Atlas Du Spectre D’Absborption de la Molecule D’Iode (Editions du Centre National de la Recherche Scientifique, Paris, 1978); “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. 14, 791–794 (1979).
  21. S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. 46, 867–881(1985).
    [CrossRef]
  22. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980); J. L. Hall, L. Holberg, T. Baer, H. J. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
    [CrossRef] [PubMed]
  23. M. A. Zumberge, “Frequency stability of a Zeeman-stabilized laser,” Appl. Opt. 24, 1902 (1985); T. M. Nieubauer, J. E. Faller, H. M. Godwin, J. L. Hall, R. L. Barger, “Frequency stability measurement on polarization-stabilized He–Ne lasers,” Appl. Opt. 27, 1285–1289 (1988).
    [CrossRef] [PubMed]
  24. T. Ikegami, S. S. Ohshima, M. Ohtsu, “Frequency stablization of laser diodes to the Cs-D2 line with the Zeeman modulation method,” Jpn. J. Appl. Phys. 28, L1839–L1841 (1989).
    [CrossRef]
  25. V. Pevtschin, S. Ezekiel, “Investigation of absolute stability of water-vapor stabilized semiconductor laser,” Opt. Lett. 12, 172–174 (1987).
    [CrossRef] [PubMed]
  26. H. Ludvigsen, C. Holmlund, “Frequency stabilization of a GaAlAs semiconductor laser to an absorption line of iodine vapor,” Rev. Sci. Instrum. 63, 2135–2137 (1992).
    [CrossRef]
  27. A. Ishida, “Two-wavelength displacement-measuring interferometer using second-harmonic light to eliminate air-turbulence-induced errors,” Jpn. J. Appl. Phys. 28, L473–L475 (1989).
    [CrossRef]
  28. R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of FDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second harmonic generation,” IEEE J. Quantum Electron. 26, 113–124 (1990).
    [CrossRef]
  29. M. Glaser, “An improved He–Ne laser at λ = 612 nm stabilized by means of an external absorption cell,” Metrologia 23, 45–53 (1986).
    [CrossRef]

1993 (4)

1992 (3)

1991 (1)

1990 (1)

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of FDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second harmonic generation,” IEEE J. Quantum Electron. 26, 113–124 (1990).
[CrossRef]

1989 (5)

T. Ikegami, S. S. Ohshima, M. Ohtsu, “Frequency stablization of laser diodes to the Cs-D2 line with the Zeeman modulation method,” Jpn. J. Appl. Phys. 28, L1839–L1841 (1989).
[CrossRef]

A. Ishida, “Two-wavelength displacement-measuring interferometer using second-harmonic light to eliminate air-turbulence-induced errors,” Jpn. J. Appl. Phys. 28, L473–L475 (1989).
[CrossRef]

J. E. Faller, P. F. Bender, J. L. Hall, D. Hills, R. T. Stebbins, M. A. Vincent, “An antenna for laser gravitational wave observations in space,” Adv. Space Res. 9, 107–111 (1989).
[CrossRef]

C. D. Nabors, A. D. Farinas, T. Day, S. T. Yang, E. K. Gustafson, R. L. Byer, “Injection locking of a 13-W cw Nd:YAG ring laser,” Opt. Lett. 14, 1189–1191 (1989).
[CrossRef] [PubMed]

D. Shoemaker, A. Brillet, C. N. Man, O. Cregut, G. Kerr, “Frequency-stabilized laser-diode-pumped Nd:YAG laser,” Opt. Lett. 14, 609–611 (1989); T. Day, E. K. Gustafson, R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry–Perot cavity,” IEEE J. Quantum. Electron. 28, 1106–1116 (1992).
[CrossRef] [PubMed]

1988 (2)

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Hucra, M. R. Pearlman, I. I. Shapiro, R. S. Taylor, P. F. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnston, B. F. Jones, L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[CrossRef]

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

1987 (2)

1986 (1)

M. Glaser, “An improved He–Ne laser at λ = 612 nm stabilized by means of an external absorption cell,” Metrologia 23, 45–53 (1986).
[CrossRef]

1985 (4)

T. J. Kane, R. L. Byer, “Monolithic, unidirectional single mode ring laser,” Opt. Lett. 10, 65–67 (1985).
[CrossRef] [PubMed]

S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. 46, 867–881(1985).
[CrossRef]

S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu Petrun’kin, “Hyperfine structure of 127I2 absorption lines coinciding with the second harominc frequency of a YAG:Nd laser,” Opt. Spectrosc. 59, 414–416 (1985); “Frequency stabilization of a Nd:YAG laser by means of 127I2 absorption lines,” Sov. Tech. Phys. Lett. 11, 111–112 (1985).

M. A. Zumberge, “Frequency stability of a Zeeman-stabilized laser,” Appl. Opt. 24, 1902 (1985); T. M. Nieubauer, J. E. Faller, H. M. Godwin, J. L. Hall, R. L. Barger, “Frequency stability measurement on polarization-stabilized He–Ne lasers,” Appl. Opt. 27, 1285–1289 (1988).
[CrossRef] [PubMed]

1980 (1)

Arie, A.

Babcock, R. W.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Hucra, M. R. Pearlman, I. I. Shapiro, R. S. Taylor, P. F. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnston, B. F. Jones, L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[CrossRef]

Bender, P. F.

J. E. Faller, P. F. Bender, J. L. Hall, D. Hills, R. T. Stebbins, M. A. Vincent, “An antenna for laser gravitational wave observations in space,” Adv. Space Res. 9, 107–111 (1989).
[CrossRef]

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Hucra, M. R. Pearlman, I. I. Shapiro, R. S. Taylor, P. F. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnston, B. F. Jones, L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[CrossRef]

Bjorklund, G. C.

Brillet, A.

Buffington, A.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Hucra, M. R. Pearlman, I. I. Shapiro, R. S. Taylor, P. F. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnston, B. F. Jones, L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[CrossRef]

Byer, R. L.

A. Arie, R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993).
[CrossRef]

N. M. Sampas, E. K. Gustafson, R. L. Byer, “Long term stability of two diode-laser pumped non-planar ring lasers independently stabilized to two Fabry–Perot interferometers,” Opt. Lett. 12, 947–949 (1993).
[CrossRef]

A. Arie, S. Schiller, E. K. Gustafson, R. L. Byer, “Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine,” Opt. Lett. 17, 1204–1206 (1992).
[CrossRef] [PubMed]

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of FDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second harmonic generation,” IEEE J. Quantum Electron. 26, 113–124 (1990).
[CrossRef]

C. D. Nabors, A. D. Farinas, T. Day, S. T. Yang, E. K. Gustafson, R. L. Byer, “Injection locking of a 13-W cw Nd:YAG ring laser,” Opt. Lett. 14, 1189–1191 (1989).
[CrossRef] [PubMed]

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

T. J. Kane, R. L. Byer, “Monolithic, unidirectional single mode ring laser,” Opt. Lett. 10, 65–67 (1985).
[CrossRef] [PubMed]

R. L. Byer, R. L. Herbst, R. N. Fleming, “A broadly tunable IR source,” in Laser Spectroscopy, S. Haroche, M. Ducloy, E. Giacobino, eds. (Springer, New York, 1975), pp. 207–226.
[CrossRef]

Carney, B.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Hucra, M. R. Pearlman, I. I. Shapiro, R. S. Taylor, P. F. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnston, B. F. Jones, L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[CrossRef]

Chandler, J. F.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Hucra, M. R. Pearlman, I. I. Shapiro, R. S. Taylor, P. F. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnston, B. F. Jones, L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[CrossRef]

Chao, B. F.

O. L. Colombo, B. F. Chao, “Global gravitational change from space in 2001,” in Seventh I.A.G. Symposium on Geodesy and Physics of the Earth, I.A.G. Symposium 112 (Springer-Verlag, New York, to be published).

Colombo, O. L.

O. L. Colombo, B. F. Chao, “Global gravitational change from space in 2001,” in Seventh I.A.G. Symposium on Geodesy and Physics of the Earth, I.A.G. Symposium 112 (Springer-Verlag, New York, to be published).

Cregut, O.

Day, T.

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of FDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second harmonic generation,” IEEE J. Quantum Electron. 26, 113–124 (1990).
[CrossRef]

Esherick, P.

Ezekiel, S.

Faller, J. E.

J. E. Faller, P. F. Bender, J. L. Hall, D. Hills, R. T. Stebbins, M. A. Vincent, “An antenna for laser gravitational wave observations in space,” Adv. Space Res. 9, 107–111 (1989).
[CrossRef]

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of FDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second harmonic generation,” IEEE J. Quantum Electron. 26, 113–124 (1990).
[CrossRef]

Farinas, A. D.

Fleming, R. N.

R. L. Byer, R. L. Herbst, R. N. Fleming, “A broadly tunable IR source,” in Laser Spectroscopy, S. Haroche, M. Ducloy, E. Giacobino, eds. (Springer, New York, 1975), pp. 207–226.
[CrossRef]

Fritschel, P.

Gerstenberger, D. C.

Gerstenkorn, S.

S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. 46, 867–881(1985).
[CrossRef]

S. Gerstenkorn, P. Luc, Atlas Du Spectre D’Absborption de la Molecule D’Iode (Editions du Centre National de la Recherche Scientifique, Paris, 1978); “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. 14, 791–794 (1979).

Glaser, M.

M. Glaser, “An improved He–Ne laser at λ = 612 nm stabilized by means of an external absorption cell,” Metrologia 23, 45–53 (1986).
[CrossRef]

Gorenstein, M. V.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Hucra, M. R. Pearlman, I. I. Shapiro, R. S. Taylor, P. F. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnston, B. F. Jones, L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[CrossRef]

Gustafson, E. K.

Hall, J. L.

J. E. Faller, P. F. Bender, J. L. Hall, D. Hills, R. T. Stebbins, M. A. Vincent, “An antenna for laser gravitational wave observations in space,” Adv. Space Res. 9, 107–111 (1989).
[CrossRef]

Harrison, J. A.

Heilmann, R.

Locking of Nd:YAG laser to the side of a Doppler-broadened line for communication applications was reported after the submission of this paper; see R. Heilmann, J. Kuschel, “Absolute frequency locking of diode-pumped Nd:YAG laser for application in free-space optical communication,” Electron. Lett. 29, 810–811 (1993).
[CrossRef]

Herbst, R. L.

R. L. Byer, R. L. Herbst, R. N. Fleming, “A broadly tunable IR source,” in Laser Spectroscopy, S. Haroche, M. Ducloy, E. Giacobino, eds. (Springer, New York, 1975), pp. 207–226.
[CrossRef]

Hills, D.

J. E. Faller, P. F. Bender, J. L. Hall, D. Hills, R. T. Stebbins, M. A. Vincent, “An antenna for laser gravitational wave observations in space,” Adv. Space Res. 9, 107–111 (1989).
[CrossRef]

Holmlund, C.

H. Ludvigsen, C. Holmlund, “Frequency stabilization of a GaAlAs semiconductor laser to an absorption line of iodine vapor,” Rev. Sci. Instrum. 63, 2135–2137 (1992).
[CrossRef]

Hucra, J. P.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Hucra, M. R. Pearlman, I. I. Shapiro, R. S. Taylor, P. F. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnston, B. F. Jones, L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[CrossRef]

Hughes, J. A.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Hucra, M. R. Pearlman, I. I. Shapiro, R. S. Taylor, P. F. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnston, B. F. Jones, L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[CrossRef]

Ikegami, T.

T. Ikegami, S. S. Ohshima, M. Ohtsu, “Frequency stablization of laser diodes to the Cs-D2 line with the Zeeman modulation method,” Jpn. J. Appl. Phys. 28, L1839–L1841 (1989).
[CrossRef]

Ishida, A.

A. Ishida, “Two-wavelength displacement-measuring interferometer using second-harmonic light to eliminate air-turbulence-induced errors,” Jpn. J. Appl. Phys. 28, L473–L475 (1989).
[CrossRef]

Johnston, K. J.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Hucra, M. R. Pearlman, I. I. Shapiro, R. S. Taylor, P. F. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnston, B. F. Jones, L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[CrossRef]

Jones, B. F.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Hucra, M. R. Pearlman, I. I. Shapiro, R. S. Taylor, P. F. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnston, B. F. Jones, L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[CrossRef]

Kane, T. J.

Kerr, G.

Kozlovsky, W. J.

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

Kruzhalov, S. V.

S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu Petrun’kin, “Hyperfine structure of 127I2 absorption lines coinciding with the second harominc frequency of a YAG:Nd laser,” Opt. Spectrosc. 59, 414–416 (1985); “Frequency stabilization of a Nd:YAG laser by means of 127I2 absorption lines,” Sov. Tech. Phys. Lett. 11, 111–112 (1985).

Kuschel, J.

Locking of Nd:YAG laser to the side of a Doppler-broadened line for communication applications was reported after the submission of this paper; see R. Heilmann, J. Kuschel, “Absolute frequency locking of diode-pumped Nd:YAG laser for application in free-space optical communication,” Electron. Lett. 29, 810–811 (1993).
[CrossRef]

Luc, P.

S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. 46, 867–881(1985).
[CrossRef]

S. Gerstenkorn, P. Luc, Atlas Du Spectre D’Absborption de la Molecule D’Iode (Editions du Centre National de la Recherche Scientifique, Paris, 1978); “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. 14, 791–794 (1979).

Ludvigsen, H.

H. Ludvigsen, C. Holmlund, “Frequency stabilization of a GaAlAs semiconductor laser to an absorption line of iodine vapor,” Rev. Sci. Instrum. 63, 2135–2137 (1992).
[CrossRef]

Mak, A. A.

A. A. Mak, S. G. Muravitsky, O. A. Orlov, V. I. Ustyugov, “New laser interferometry with long-term frequency stabilization at 1.06 μm onto molecular cesium standard,” in Interferometry ’89, Z. Jaroszewicz, M. Pluta, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1121, 478–484 (1989); O. A. Orlov, V. I. Ustyugov, “Molecular cesium reference for frequency stabilization of a 1.06 μm Nd:YAG laser,” Sov. Tech. Phys. Lett. 12, 120 (1986); K. Wallmeroth, R. Letterer, “Cesium frequency standard for lasers at λ = 1.06 μm,” Opt. Lett. 15, 812–813 (1990).
[CrossRef] [PubMed]

Man, C. N.

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of FDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second harmonic generation,” IEEE J. Quantum Electron. 26, 113–124 (1990).
[CrossRef]

Matson, L. E.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Hucra, M. R. Pearlman, I. I. Shapiro, R. S. Taylor, P. F. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnston, B. F. Jones, L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[CrossRef]

Muravitsky, S. G.

A. A. Mak, S. G. Muravitsky, O. A. Orlov, V. I. Ustyugov, “New laser interferometry with long-term frequency stabilization at 1.06 μm onto molecular cesium standard,” in Interferometry ’89, Z. Jaroszewicz, M. Pluta, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1121, 478–484 (1989); O. A. Orlov, V. I. Ustyugov, “Molecular cesium reference for frequency stabilization of a 1.06 μm Nd:YAG laser,” Sov. Tech. Phys. Lett. 12, 120 (1986); K. Wallmeroth, R. Letterer, “Cesium frequency standard for lasers at λ = 1.06 μm,” Opt. Lett. 15, 812–813 (1990).
[CrossRef] [PubMed]

Nabors, C. D.

C. D. Nabors, A. D. Farinas, T. Day, S. T. Yang, E. K. Gustafson, R. L. Byer, “Injection locking of a 13-W cw Nd:YAG ring laser,” Opt. Lett. 14, 1189–1191 (1989).
[CrossRef] [PubMed]

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

Nibler, J. W.

Ohshima, S. S.

T. Ikegami, S. S. Ohshima, M. Ohtsu, “Frequency stablization of laser diodes to the Cs-D2 line with the Zeeman modulation method,” Jpn. J. Appl. Phys. 28, L1839–L1841 (1989).
[CrossRef]

Ohtsu, M.

T. Ikegami, S. S. Ohshima, M. Ohtsu, “Frequency stablization of laser diodes to the Cs-D2 line with the Zeeman modulation method,” Jpn. J. Appl. Phys. 28, L1839–L1841 (1989).
[CrossRef]

Orlov, O. A.

A. A. Mak, S. G. Muravitsky, O. A. Orlov, V. I. Ustyugov, “New laser interferometry with long-term frequency stabilization at 1.06 μm onto molecular cesium standard,” in Interferometry ’89, Z. Jaroszewicz, M. Pluta, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1121, 478–484 (1989); O. A. Orlov, V. I. Ustyugov, “Molecular cesium reference for frequency stabilization of a 1.06 μm Nd:YAG laser,” Sov. Tech. Phys. Lett. 12, 120 (1986); K. Wallmeroth, R. Letterer, “Cesium frequency standard for lasers at λ = 1.06 μm,” Opt. Lett. 15, 812–813 (1990).
[CrossRef] [PubMed]

Owyoung, A.

Pakhomov, L. N.

S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu Petrun’kin, “Hyperfine structure of 127I2 absorption lines coinciding with the second harominc frequency of a YAG:Nd laser,” Opt. Spectrosc. 59, 414–416 (1985); “Frequency stabilization of a Nd:YAG laser by means of 127I2 absorption lines,” Sov. Tech. Phys. Lett. 11, 111–112 (1985).

Parfenov, V. A.

S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu Petrun’kin, “Hyperfine structure of 127I2 absorption lines coinciding with the second harominc frequency of a YAG:Nd laser,” Opt. Spectrosc. 59, 414–416 (1985); “Frequency stabilization of a Nd:YAG laser by means of 127I2 absorption lines,” Sov. Tech. Phys. Lett. 11, 111–112 (1985).

Pearlman, M. R.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Hucra, M. R. Pearlman, I. I. Shapiro, R. S. Taylor, P. F. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnston, B. F. Jones, L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[CrossRef]

Pevtschin, V.

Reasenberg, R. D.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Hucra, M. R. Pearlman, I. I. Shapiro, R. S. Taylor, P. F. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnston, B. F. Jones, L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[CrossRef]

Sampas, N. M.

Schiller, S.

Schumaker, B. L.

B. L. Schumaker, “Scientific applications of frequency stabilized laser technology in space,” Jet Propulsion Laboratory Rep. 90-50 (Jet Propulsion Laboratory, Pasadena, Calif., 1990).

Shapiro, I. I.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Hucra, M. R. Pearlman, I. I. Shapiro, R. S. Taylor, P. F. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnston, B. F. Jones, L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[CrossRef]

Shoemaker, D.

Stebbins, R. T.

J. E. Faller, P. F. Bender, J. L. Hall, D. Hills, R. T. Stebbins, M. A. Vincent, “An antenna for laser gravitational wave observations in space,” Adv. Space Res. 9, 107–111 (1989).
[CrossRef]

Taylor, R. S.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Hucra, M. R. Pearlman, I. I. Shapiro, R. S. Taylor, P. F. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnston, B. F. Jones, L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[CrossRef]

Tye, G. E.

Ustyugov, V. I.

A. A. Mak, S. G. Muravitsky, O. A. Orlov, V. I. Ustyugov, “New laser interferometry with long-term frequency stabilization at 1.06 μm onto molecular cesium standard,” in Interferometry ’89, Z. Jaroszewicz, M. Pluta, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1121, 478–484 (1989); O. A. Orlov, V. I. Ustyugov, “Molecular cesium reference for frequency stabilization of a 1.06 μm Nd:YAG laser,” Sov. Tech. Phys. Lett. 12, 120 (1986); K. Wallmeroth, R. Letterer, “Cesium frequency standard for lasers at λ = 1.06 μm,” Opt. Lett. 15, 812–813 (1990).
[CrossRef] [PubMed]

Vincent, M. A.

J. E. Faller, P. F. Bender, J. L. Hall, D. Hills, R. T. Stebbins, M. A. Vincent, “An antenna for laser gravitational wave observations in space,” Adv. Space Res. 9, 107–111 (1989).
[CrossRef]

Wallace, R. W.

Weiss, R.

Yang, S. T.

Yu Petrun’kin, V.

S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu Petrun’kin, “Hyperfine structure of 127I2 absorption lines coinciding with the second harominc frequency of a YAG:Nd laser,” Opt. Spectrosc. 59, 414–416 (1985); “Frequency stabilization of a Nd:YAG laser by means of 127I2 absorption lines,” Sov. Tech. Phys. Lett. 11, 111–112 (1985).

Zahedi, M.

Zumberge, M. A.

Adv. Space Res. (1)

J. E. Faller, P. F. Bender, J. L. Hall, D. Hills, R. T. Stebbins, M. A. Vincent, “An antenna for laser gravitational wave observations in space,” Adv. Space Res. 9, 107–111 (1989).
[CrossRef]

Appl. Opt. (2)

Astron. J. (1)

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Hucra, M. R. Pearlman, I. I. Shapiro, R. S. Taylor, P. F. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnston, B. F. Jones, L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[CrossRef]

Electron. Lett. (1)

Locking of Nd:YAG laser to the side of a Doppler-broadened line for communication applications was reported after the submission of this paper; see R. Heilmann, J. Kuschel, “Absolute frequency locking of diode-pumped Nd:YAG laser for application in free-space optical communication,” Electron. Lett. 29, 810–811 (1993).
[CrossRef]

IEEE J. Quantum Electron. (2)

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of FDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second harmonic generation,” IEEE J. Quantum Electron. 26, 113–124 (1990).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. (1)

S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. 46, 867–881(1985).
[CrossRef]

Jpn. J. Appl. Phys. (2)

T. Ikegami, S. S. Ohshima, M. Ohtsu, “Frequency stablization of laser diodes to the Cs-D2 line with the Zeeman modulation method,” Jpn. J. Appl. Phys. 28, L1839–L1841 (1989).
[CrossRef]

A. Ishida, “Two-wavelength displacement-measuring interferometer using second-harmonic light to eliminate air-turbulence-induced errors,” Jpn. J. Appl. Phys. 28, L473–L475 (1989).
[CrossRef]

Metrologia (1)

M. Glaser, “An improved He–Ne laser at λ = 612 nm stabilized by means of an external absorption cell,” Metrologia 23, 45–53 (1986).
[CrossRef]

Opt. Lett. (9)

V. Pevtschin, S. Ezekiel, “Investigation of absolute stability of water-vapor stabilized semiconductor laser,” Opt. Lett. 12, 172–174 (1987).
[CrossRef] [PubMed]

G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980); J. L. Hall, L. Holberg, T. Baer, H. J. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef] [PubMed]

D. C. Gerstenberger, G. E. Tye, R. W. Wallace, “Efficient second-harmonic conversion of cw single-frequency Nd:YAG laser light by frequency locking to a monolithic ring frequency doubler,” Opt. Lett. 16, 992–994 (1991).
[CrossRef] [PubMed]

J. A. Harrison, M. Zahedi, J. W. Nibler, “Use of seeded Nd:YAG lasers for high resolution spectroscopy,” Opt. Lett. 18, 149–151 (1993).
[CrossRef] [PubMed]

A. Arie, S. Schiller, E. K. Gustafson, R. L. Byer, “Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine,” Opt. Lett. 17, 1204–1206 (1992).
[CrossRef] [PubMed]

D. Shoemaker, A. Brillet, C. N. Man, O. Cregut, G. Kerr, “Frequency-stabilized laser-diode-pumped Nd:YAG laser,” Opt. Lett. 14, 609–611 (1989); T. Day, E. K. Gustafson, R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry–Perot cavity,” IEEE J. Quantum. Electron. 28, 1106–1116 (1992).
[CrossRef] [PubMed]

N. M. Sampas, E. K. Gustafson, R. L. Byer, “Long term stability of two diode-laser pumped non-planar ring lasers independently stabilized to two Fabry–Perot interferometers,” Opt. Lett. 12, 947–949 (1993).
[CrossRef]

T. J. Kane, R. L. Byer, “Monolithic, unidirectional single mode ring laser,” Opt. Lett. 10, 65–67 (1985).
[CrossRef] [PubMed]

C. D. Nabors, A. D. Farinas, T. Day, S. T. Yang, E. K. Gustafson, R. L. Byer, “Injection locking of a 13-W cw Nd:YAG ring laser,” Opt. Lett. 14, 1189–1191 (1989).
[CrossRef] [PubMed]

Opt. Spectrosc. (1)

S. V. Kruzhalov, V. A. Parfenov, L. N. Pakhomov, V. Yu Petrun’kin, “Hyperfine structure of 127I2 absorption lines coinciding with the second harominc frequency of a YAG:Nd laser,” Opt. Spectrosc. 59, 414–416 (1985); “Frequency stabilization of a Nd:YAG laser by means of 127I2 absorption lines,” Sov. Tech. Phys. Lett. 11, 111–112 (1985).

Rev. Sci. Instrum. (1)

H. Ludvigsen, C. Holmlund, “Frequency stabilization of a GaAlAs semiconductor laser to an absorption line of iodine vapor,” Rev. Sci. Instrum. 63, 2135–2137 (1992).
[CrossRef]

Other (5)

S. Gerstenkorn, P. Luc, Atlas Du Spectre D’Absborption de la Molecule D’Iode (Editions du Centre National de la Recherche Scientifique, Paris, 1978); “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. 14, 791–794 (1979).

R. L. Byer, R. L. Herbst, R. N. Fleming, “A broadly tunable IR source,” in Laser Spectroscopy, S. Haroche, M. Ducloy, E. Giacobino, eds. (Springer, New York, 1975), pp. 207–226.
[CrossRef]

B. L. Schumaker, “Scientific applications of frequency stabilized laser technology in space,” Jet Propulsion Laboratory Rep. 90-50 (Jet Propulsion Laboratory, Pasadena, Calif., 1990).

O. L. Colombo, B. F. Chao, “Global gravitational change from space in 2001,” in Seventh I.A.G. Symposium on Geodesy and Physics of the Earth, I.A.G. Symposium 112 (Springer-Verlag, New York, to be published).

A. A. Mak, S. G. Muravitsky, O. A. Orlov, V. I. Ustyugov, “New laser interferometry with long-term frequency stabilization at 1.06 μm onto molecular cesium standard,” in Interferometry ’89, Z. Jaroszewicz, M. Pluta, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1121, 478–484 (1989); O. A. Orlov, V. I. Ustyugov, “Molecular cesium reference for frequency stabilization of a 1.06 μm Nd:YAG laser,” Sov. Tech. Phys. Lett. 12, 120 (1986); K. Wallmeroth, R. Letterer, “Cesium frequency standard for lasers at λ = 1.06 μm,” Opt. Lett. 15, 812–813 (1990).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for locking the laser to the center of the linear absorption lines of iodine. Att., optical attenuator; PZT, piezoelectric transducer; EOM, electro-optic modulator; TEC, thermo-electric cooler. Ref. laser is locked to Doppler-free transition in iodine.

Fig. 2
Fig. 2

(a) Linear absorption, FM error signal, and saturated absorption spectrum of R(56)32-0 line at 18 788.3 cm−1 (vacuum wavelength = 0.53225 μm); (b) linear absorption, FM error signal and saturated absorption spectrum of P(119)35-0 line at 18 787.1 cm−1 (vacuum wavelength = 0.53228 μm).

Fig. 3
Fig. 3

Root Allan variance of the beat note between a laser locked to a linear I2 absorption line versus a reference laser locked to Doppler-free line and two free-running lasers.16 M = 100 and ν = 281.63 THz.

Fig. 4
Fig. 4

Typical variation of beatnote frequency of the DBL-stabilized laser versus a reference laser locked to the hyperfine transition as a function of time.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ 2 ( τ ) = 1 2 ν 2 ( M - 1 ) i = 1 M - 1 ( y i + 1 - y i ) 2 ,

Metrics