Abstract

The optical writing phenomenon observed on azoaromatic-containing polymer thin films exhibits a writing rate proportional to the intensity of the writing beam. This property of the mechanism for optically inducing dichroism and birefringence results directly in nonlinear optical behavior in the thin film. The net phase retardation obtainable and the writing rates are functions of the thin-film thickness that reflect this nonlinear behavior.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. I. A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984); “Polarization holography. II. Polarization holographic gratings in photoanisotropic material with and without intrinsic birefringence,” Appl. Opt. 23, 4588–4591 (1984).
    [CrossRef] [PubMed]
  2. Y. Q. Shi, W. H. Steier, L. P. Yu, M. Chen, L. R. Dalton, “Large stable photoinduced refractive index change in a nonlinear optical polyester polymer with disperse red side groups,” Appl. Phys. Lett. 58, 1131–1133 (1991).
    [CrossRef]
  3. J. W. Wu, “Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties,” J. Opt. Soc. Am. B 8, 142–152 (1991).
    [CrossRef]
  4. J. J. A. Couture, R. A. Lessard, “Modulation transfer function of azo dyes in PVA matrix used as an optical recording material,” Appl. Opt. 27, 3368–3374 (1988).
    [CrossRef] [PubMed]
  5. P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
    [CrossRef]
  6. A. Natansohn, P. Rochon, J. Gosselin, S. Xie, “Azo polymers for reversible optical storage I,” Macromolecules 25, 2268–2273 (1992).
    [CrossRef]
  7. A. Natansohn, S. Xie, P. Rochon, “Azo polymers for reversible optical storage II,” Macromolecules 25, 5531–5532 (1992).
    [CrossRef]
  8. H. Rau, “Photoisomerization of azobenzenes,” in Photochemistry and Photophysics, J. F. Rabek, ed. (CRC, Boca Raton, Fla., 1990), Vol. 2, p. 119.
  9. M. G. Kuzyk, V. E. Sohn, C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842–858 (1990).
    [CrossRef]

1992 (3)

P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

A. Natansohn, P. Rochon, J. Gosselin, S. Xie, “Azo polymers for reversible optical storage I,” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

A. Natansohn, S. Xie, P. Rochon, “Azo polymers for reversible optical storage II,” Macromolecules 25, 5531–5532 (1992).
[CrossRef]

1991 (2)

Y. Q. Shi, W. H. Steier, L. P. Yu, M. Chen, L. R. Dalton, “Large stable photoinduced refractive index change in a nonlinear optical polyester polymer with disperse red side groups,” Appl. Phys. Lett. 58, 1131–1133 (1991).
[CrossRef]

J. W. Wu, “Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties,” J. Opt. Soc. Am. B 8, 142–152 (1991).
[CrossRef]

1990 (1)

1988 (1)

1984 (1)

Chen, M.

Y. Q. Shi, W. H. Steier, L. P. Yu, M. Chen, L. R. Dalton, “Large stable photoinduced refractive index change in a nonlinear optical polyester polymer with disperse red side groups,” Appl. Phys. Lett. 58, 1131–1133 (1991).
[CrossRef]

Couture, J. J. A.

Dalton, L. R.

Y. Q. Shi, W. H. Steier, L. P. Yu, M. Chen, L. R. Dalton, “Large stable photoinduced refractive index change in a nonlinear optical polyester polymer with disperse red side groups,” Appl. Phys. Lett. 58, 1131–1133 (1991).
[CrossRef]

Dirk, C. W.

Gosselin, J.

P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

A. Natansohn, P. Rochon, J. Gosselin, S. Xie, “Azo polymers for reversible optical storage I,” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

Kuzyk, M. G.

Lessard, R. A.

Natansohn, A.

A. Natansohn, S. Xie, P. Rochon, “Azo polymers for reversible optical storage II,” Macromolecules 25, 5531–5532 (1992).
[CrossRef]

P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

A. Natansohn, P. Rochon, J. Gosselin, S. Xie, “Azo polymers for reversible optical storage I,” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

Nikolova, L.

Rau, H.

H. Rau, “Photoisomerization of azobenzenes,” in Photochemistry and Photophysics, J. F. Rabek, ed. (CRC, Boca Raton, Fla., 1990), Vol. 2, p. 119.

Rochon, P.

A. Natansohn, S. Xie, P. Rochon, “Azo polymers for reversible optical storage II,” Macromolecules 25, 5531–5532 (1992).
[CrossRef]

A. Natansohn, P. Rochon, J. Gosselin, S. Xie, “Azo polymers for reversible optical storage I,” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

Shi, Y. Q.

Y. Q. Shi, W. H. Steier, L. P. Yu, M. Chen, L. R. Dalton, “Large stable photoinduced refractive index change in a nonlinear optical polyester polymer with disperse red side groups,” Appl. Phys. Lett. 58, 1131–1133 (1991).
[CrossRef]

Sohn, V. E.

Steier, W. H.

Y. Q. Shi, W. H. Steier, L. P. Yu, M. Chen, L. R. Dalton, “Large stable photoinduced refractive index change in a nonlinear optical polyester polymer with disperse red side groups,” Appl. Phys. Lett. 58, 1131–1133 (1991).
[CrossRef]

Todorov, T.

Tomova, N.

Wu, J. W.

Xie, S.

P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

A. Natansohn, S. Xie, P. Rochon, “Azo polymers for reversible optical storage II,” Macromolecules 25, 5531–5532 (1992).
[CrossRef]

A. Natansohn, P. Rochon, J. Gosselin, S. Xie, “Azo polymers for reversible optical storage I,” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

Yu, L. P.

Y. Q. Shi, W. H. Steier, L. P. Yu, M. Chen, L. R. Dalton, “Large stable photoinduced refractive index change in a nonlinear optical polyester polymer with disperse red side groups,” Appl. Phys. Lett. 58, 1131–1133 (1991).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

Y. Q. Shi, W. H. Steier, L. P. Yu, M. Chen, L. R. Dalton, “Large stable photoinduced refractive index change in a nonlinear optical polyester polymer with disperse red side groups,” Appl. Phys. Lett. 58, 1131–1133 (1991).
[CrossRef]

P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

J. Opt. Soc. Am. B (2)

Macromolecules (2)

A. Natansohn, P. Rochon, J. Gosselin, S. Xie, “Azo polymers for reversible optical storage I,” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

A. Natansohn, S. Xie, P. Rochon, “Azo polymers for reversible optical storage II,” Macromolecules 25, 5531–5532 (1992).
[CrossRef]

Other (1)

H. Rau, “Photoisomerization of azobenzenes,” in Photochemistry and Photophysics, J. F. Rabek, ed. (CRC, Boca Raton, Fla., 1990), Vol. 2, p. 119.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Absorption spectra of pDRA1: B, not written; A, perpendicular to writing polarization; C, parallel to writing polarization.

Fig. 2
Fig. 2

Induced phase retardation on pDR1A films as a function of time. The film thicknesses are as follows: A, 55 nm; B, 118 nm; C, 160 nm; D, 260 nm; E, 350 nm.

Fig. 3
Fig. 3

Induced phase retardation simulation as a function of time for various film thickness (α0d), given by the following: a, 0.5; b, 1.0; c, 2.0; d, 4.0; e, 8.0; f, 16.0.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( w p ) = c π P 0 Δ α ( w ) w 2 w p 2 d w ,
α ( x , t ) t = k [ α ( x , t ) α ] I ( x , t ) ,
I ( x , t ) x = α ( x , t ) I ( x , t )
ϕ = C 0 d [ α ( x , t ) α 0 ] d x ,

Metrics