Abstract

We discuss a three-dimensional sensor that combines coded illumination and triangulation. The sensor supplies the distance of ~250,000 object pixels (TV format) in 40 ms (one single TV frame period). The method is based on the following principle: a color spectrum of a white-light source is imaged onto the object by illumination from one certain direction. The object is observed by a color TV camera from a direction of observation, which is different from the direction of illumination. The color (hue) of each pixel is a measure of its distance from a reference plane. It can be evaluated by the three (red-green-blue) output channels of the CCD camera. This evaluation can be implemented within TV real time. Even colored objects can be measured. The resolution achieved is 50–150 depth steps.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Parthasarathy, J. Birk, J. Dessimoz, “Laser range finder for robot control and inspection,” in Robot Vision, A. Rosenfeld, ed., Proc. Soc. Photo-Opt. Instrum. Eng.336, 2–10 (1982).
  2. G. Bickel, G. Häusler, M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24, 975–977 (1985).
  3. J. A. Jalkio, R. C. Kim, S. K. Case, “Three-dimensional inspection using multistripe structured light,” Opt. Eng. 24, 966–974 (1985).
  4. G. Seitz, H. Tiziani, R. Litschel, “3-D Koordinatenmes-sungdurch optische Triangulation,” Feinwerktech. Messtechn. 94, 423–425 (1986).
  5. W. Dremel, G. Häusler, M. Maul, “Triangulation with large dynamical range,” in Optical Techniques for Industrial Inspection, P. G. Cielo, ed., Proc. Soc. Photo-Opt. Instrum. Eng.665, 182–187 (1986).
  6. G. Häusler, W. Heckel, “Light sectioning with large depth and high resolution,” Appl. Opt. 27, 5165–5169 (1988).
    [CrossRef] [PubMed]
  7. G. Häusler, A. Schmidt, R. Wachtler, J. Waldmuller, “Light sectioning with diffraction free planes of light?” in Optics in Complex Systems, F. Canzl, H. Preuss, G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1319, 358 (1990).
  8. M. Halioua, H. Liu, V. Srinivasan, “Automated phase-measuring profilometry of three-dimensional diffuse objects,” Appl. Opt. 23, 3105–3108 (1984).
    [CrossRef] [PubMed]
  9. M. Gruber, G. Häusler, “Simple, robust and accurate phase-measuring triangulation,” Optik 89, 118–122 (1992).
  10. R. C. Hutley, R. F. Stevens, “The use of a zone plate monochromator as a displacement transducer,” J. Phys. E 21, 1037–1041 (1988).
    [CrossRef]
  11. P. Chavel, T. C. Strand, “Range measurement using Talbot diffraction imaging of gratings,” Appl. Opt. 23, 862–871 (1984).
    [CrossRef] [PubMed]
  12. S. Jutamulia, T. W. Lin, F. T. S. Yu, “Real-time color coding of depth using a white-light Talbot interferometer,” Opt. Commun. 58, 78–82 (1986).
    [CrossRef]

1992 (1)

M. Gruber, G. Häusler, “Simple, robust and accurate phase-measuring triangulation,” Optik 89, 118–122 (1992).

1988 (2)

R. C. Hutley, R. F. Stevens, “The use of a zone plate monochromator as a displacement transducer,” J. Phys. E 21, 1037–1041 (1988).
[CrossRef]

G. Häusler, W. Heckel, “Light sectioning with large depth and high resolution,” Appl. Opt. 27, 5165–5169 (1988).
[CrossRef] [PubMed]

1986 (2)

G. Seitz, H. Tiziani, R. Litschel, “3-D Koordinatenmes-sungdurch optische Triangulation,” Feinwerktech. Messtechn. 94, 423–425 (1986).

S. Jutamulia, T. W. Lin, F. T. S. Yu, “Real-time color coding of depth using a white-light Talbot interferometer,” Opt. Commun. 58, 78–82 (1986).
[CrossRef]

1985 (2)

G. Bickel, G. Häusler, M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24, 975–977 (1985).

J. A. Jalkio, R. C. Kim, S. K. Case, “Three-dimensional inspection using multistripe structured light,” Opt. Eng. 24, 966–974 (1985).

1984 (2)

Bickel, G.

G. Bickel, G. Häusler, M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24, 975–977 (1985).

Birk, J.

S. Parthasarathy, J. Birk, J. Dessimoz, “Laser range finder for robot control and inspection,” in Robot Vision, A. Rosenfeld, ed., Proc. Soc. Photo-Opt. Instrum. Eng.336, 2–10 (1982).

Case, S. K.

J. A. Jalkio, R. C. Kim, S. K. Case, “Three-dimensional inspection using multistripe structured light,” Opt. Eng. 24, 966–974 (1985).

Chavel, P.

Dessimoz, J.

S. Parthasarathy, J. Birk, J. Dessimoz, “Laser range finder for robot control and inspection,” in Robot Vision, A. Rosenfeld, ed., Proc. Soc. Photo-Opt. Instrum. Eng.336, 2–10 (1982).

Dremel, W.

W. Dremel, G. Häusler, M. Maul, “Triangulation with large dynamical range,” in Optical Techniques for Industrial Inspection, P. G. Cielo, ed., Proc. Soc. Photo-Opt. Instrum. Eng.665, 182–187 (1986).

Gruber, M.

M. Gruber, G. Häusler, “Simple, robust and accurate phase-measuring triangulation,” Optik 89, 118–122 (1992).

Halioua, M.

Häusler, G.

M. Gruber, G. Häusler, “Simple, robust and accurate phase-measuring triangulation,” Optik 89, 118–122 (1992).

G. Häusler, W. Heckel, “Light sectioning with large depth and high resolution,” Appl. Opt. 27, 5165–5169 (1988).
[CrossRef] [PubMed]

G. Bickel, G. Häusler, M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24, 975–977 (1985).

G. Häusler, A. Schmidt, R. Wachtler, J. Waldmuller, “Light sectioning with diffraction free planes of light?” in Optics in Complex Systems, F. Canzl, H. Preuss, G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1319, 358 (1990).

W. Dremel, G. Häusler, M. Maul, “Triangulation with large dynamical range,” in Optical Techniques for Industrial Inspection, P. G. Cielo, ed., Proc. Soc. Photo-Opt. Instrum. Eng.665, 182–187 (1986).

Heckel, W.

Hutley, R. C.

R. C. Hutley, R. F. Stevens, “The use of a zone plate monochromator as a displacement transducer,” J. Phys. E 21, 1037–1041 (1988).
[CrossRef]

Jalkio, J. A.

J. A. Jalkio, R. C. Kim, S. K. Case, “Three-dimensional inspection using multistripe structured light,” Opt. Eng. 24, 966–974 (1985).

Jutamulia, S.

S. Jutamulia, T. W. Lin, F. T. S. Yu, “Real-time color coding of depth using a white-light Talbot interferometer,” Opt. Commun. 58, 78–82 (1986).
[CrossRef]

Kim, R. C.

J. A. Jalkio, R. C. Kim, S. K. Case, “Three-dimensional inspection using multistripe structured light,” Opt. Eng. 24, 966–974 (1985).

Lin, T. W.

S. Jutamulia, T. W. Lin, F. T. S. Yu, “Real-time color coding of depth using a white-light Talbot interferometer,” Opt. Commun. 58, 78–82 (1986).
[CrossRef]

Litschel, R.

G. Seitz, H. Tiziani, R. Litschel, “3-D Koordinatenmes-sungdurch optische Triangulation,” Feinwerktech. Messtechn. 94, 423–425 (1986).

Liu, H.

Maul, M.

G. Bickel, G. Häusler, M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24, 975–977 (1985).

W. Dremel, G. Häusler, M. Maul, “Triangulation with large dynamical range,” in Optical Techniques for Industrial Inspection, P. G. Cielo, ed., Proc. Soc. Photo-Opt. Instrum. Eng.665, 182–187 (1986).

Parthasarathy, S.

S. Parthasarathy, J. Birk, J. Dessimoz, “Laser range finder for robot control and inspection,” in Robot Vision, A. Rosenfeld, ed., Proc. Soc. Photo-Opt. Instrum. Eng.336, 2–10 (1982).

Schmidt, A.

G. Häusler, A. Schmidt, R. Wachtler, J. Waldmuller, “Light sectioning with diffraction free planes of light?” in Optics in Complex Systems, F. Canzl, H. Preuss, G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1319, 358 (1990).

Seitz, G.

G. Seitz, H. Tiziani, R. Litschel, “3-D Koordinatenmes-sungdurch optische Triangulation,” Feinwerktech. Messtechn. 94, 423–425 (1986).

Srinivasan, V.

Stevens, R. F.

R. C. Hutley, R. F. Stevens, “The use of a zone plate monochromator as a displacement transducer,” J. Phys. E 21, 1037–1041 (1988).
[CrossRef]

Strand, T. C.

Tiziani, H.

G. Seitz, H. Tiziani, R. Litschel, “3-D Koordinatenmes-sungdurch optische Triangulation,” Feinwerktech. Messtechn. 94, 423–425 (1986).

Wachtler, R.

G. Häusler, A. Schmidt, R. Wachtler, J. Waldmuller, “Light sectioning with diffraction free planes of light?” in Optics in Complex Systems, F. Canzl, H. Preuss, G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1319, 358 (1990).

Waldmuller, J.

G. Häusler, A. Schmidt, R. Wachtler, J. Waldmuller, “Light sectioning with diffraction free planes of light?” in Optics in Complex Systems, F. Canzl, H. Preuss, G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1319, 358 (1990).

Yu, F. T. S.

S. Jutamulia, T. W. Lin, F. T. S. Yu, “Real-time color coding of depth using a white-light Talbot interferometer,” Opt. Commun. 58, 78–82 (1986).
[CrossRef]

Appl. Opt. (3)

Feinwerktech. Messtechn. (1)

G. Seitz, H. Tiziani, R. Litschel, “3-D Koordinatenmes-sungdurch optische Triangulation,” Feinwerktech. Messtechn. 94, 423–425 (1986).

J. Phys. E (1)

R. C. Hutley, R. F. Stevens, “The use of a zone plate monochromator as a displacement transducer,” J. Phys. E 21, 1037–1041 (1988).
[CrossRef]

Opt. Commun. (1)

S. Jutamulia, T. W. Lin, F. T. S. Yu, “Real-time color coding of depth using a white-light Talbot interferometer,” Opt. Commun. 58, 78–82 (1986).
[CrossRef]

Opt. Eng. (2)

G. Bickel, G. Häusler, M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24, 975–977 (1985).

J. A. Jalkio, R. C. Kim, S. K. Case, “Three-dimensional inspection using multistripe structured light,” Opt. Eng. 24, 966–974 (1985).

Optik (1)

M. Gruber, G. Häusler, “Simple, robust and accurate phase-measuring triangulation,” Optik 89, 118–122 (1992).

Other (3)

S. Parthasarathy, J. Birk, J. Dessimoz, “Laser range finder for robot control and inspection,” in Robot Vision, A. Rosenfeld, ed., Proc. Soc. Photo-Opt. Instrum. Eng.336, 2–10 (1982).

W. Dremel, G. Häusler, M. Maul, “Triangulation with large dynamical range,” in Optical Techniques for Industrial Inspection, P. G. Cielo, ed., Proc. Soc. Photo-Opt. Instrum. Eng.665, 182–187 (1986).

G. Häusler, A. Schmidt, R. Wachtler, J. Waldmuller, “Light sectioning with diffraction free planes of light?” in Optics in Complex Systems, F. Canzl, H. Preuss, G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1319, 358 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Principle of triangulation. The directions of illumination and observation are different; the height of the object can be determined by the perspective shift of the light line relative to the ground.

Fig. 2
Fig. 2

With a spectrum in the x direction for illumination, the height of the object at the coordinate x0 is given by the color (λ), which the CCD camera detects at x0.

Fig. 3
Fig. 3

Basic setup to illuminate the object with a spectrum. The useless green color range is eliminated from the (sharp) spectral plane SP (see Fig. 7): L1–L4, lenses.

Fig. 4
Fig. 4

RGB outputs of a commercial color CCD camera versus the (nonlinear) spectrum of a prism as used in the sensor. The red gain is decreased; the blue gain is increased relative to the green to fit the dynamical range.

Fig. 5
Fig. 5

Color cone of the intensity/hue/saturation space.

Fig. 6
Fig. 6

Calculated hue from the signals of Fig. 4. Note the insufficient color resolution at the plateau T in the green range.

Fig. 7
Fig. 7

Setup to eliminate the useless green range in the prism spectrum. The mirrors have to be placed into the intermediate spectrum.

Fig. 8
Fig. 8

Result of the spectral adaptation is here a strongly monotonie function of the hue within the measurement range.

Fig. 9
Fig. 9

Red (R), green (G), and blue (B) camera pictures, of the object under test, which is illuminated with the adapted spectrum.

Fig. 10
Fig. 10

Result of the 3-D sensing. A Venetian mask (size 60 mm × 70 mm × 25 mm) is reconstructed from one color image by color triangulation.

Fig. 11
Fig. 11

Color triangulation is independent of the intrinsic color of the object. The sensor data of three differently colored planar objects (spectral reflectivity on the left) display the same, correct shape.

Fig. 12
Fig. 12

Measured function of the resolution versus background light shows that white background intensity of up to 150% of the spectral illumination barely degrades depth resolution.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

z = ( x 1 x 0 ) tan ( θ ) . .
P = ( R G B ) ,
A = ( i i i ) , i = ( R + G + B ) / 3 ,
R = ( 1 0 0 )
H = arccos [ P A , R A ( | P A | ) ( | R A | ) ] ,

Metrics