Abstract

Techniques are described for at-wavelength interferometry of multilayer coated optics designed for use in extreme-ultraviolet lithography. Broadly tunable undulator radiation, which covers the spectral region from 45 to 400 Å, is described. The coherent power available at these wavelengths is described, and several types of interferometer that might be suitable at these short wavelengths are also described.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Attwood, “New opportunities at soft x-ray wavelengths,” Phys. Today 45 (8), 24–31 (1992).
    [CrossRef]
  2. J. H. Underwood, R. C. C. Perera, J. B. Kortright, P. J. Batson, C. Capasso, S. H. Liang, W. Ng, A. K. Ray-Chaudhuri, R. K. Cole, G. Chen, Z. Y. Guo, J. Wallace, J. Welnak, G. Margaritondo, F. Cerrina, G. De Stasio, D. Mercanti, M. T. Ciotti, “The MAXIMUM Photoelectron Microscope at the University of Wisconsin’s Synchrotron Radiation Center,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 220.
  3. J. E. Bjorkholm, J. Bokor, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Rabb, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicsz, D. L. White, D. L. Windt, O. R. Wood, J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: Printing of features smaller than 0.1 μm,” J. Vac. Sci. Technol. B 8, 1509–1513 (1990).
    [CrossRef]
  4. Physics of Multilayer Structures. Vol. 7 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992.
  5. D. Stearns, R. S. Rosen, S. P. Vernon, “High-performance multilayer mirrors for soft x-ray projection lithography,” in Multilayer Optics for Advanced X-ray ApplicationsN. M. Ceglio, ed., Proc. Soc. Photo-Opt. Instrum. Eng. Proc.1547, 2 (1991).
  6. E. M. Gullikson, J. H. Underwood, P. C. Batson, V. Nikitin, “A soft x-ray/EUV reflectometer based on a laser produced plasma source,” J. X-Ray Sci. Technol. 3, 283–299 (1992).
    [CrossRef]
  7. D. G. Stearns, R. S. Rosen, S. P. Vernon, “Normal-incidence x-ray mirror for 7 nm,” Opt. Lett. 16, 1283–1285 (1991).
    [CrossRef] [PubMed]
  8. J. B. Kortright, E. M. Gullikson, P. E. Denham, “Masked deposition techniques for achieving multilayer period variations required for short-wavelength (68-Å) soft-x-ray imaging optics,” Appl. Opt. 32, 6961–6968 (1993).
    [CrossRef] [PubMed]
  9. Estimates of future memory chip sizes are based on past trends. For example, see P. Burggraaf, “Lithography’s leading edge, part 2: I-line and beyond,” Semiconductor Int. 15, 52–56(1992).
  10. W. T. Welford, Aberrations of Optical Systems (Hilger, Bristol, UK, 1986), Chap. 13, p. 241.
  11. Assumed independent, random surface figure error to arrive at this estimate.
  12. J. Underwood, E. M. Gullikson, K. Nguyen, “Tarnishing of molybdenum/silicon multilayer x-ray mirrors,” Appl. Opt. 32, 6985–6990 (1993).
    [CrossRef] [PubMed]
  13. A. E. Ennos, “Stresses developed in optical film coatings,” Appl. Opt. 5, 51–61 (1966).
    [CrossRef] [PubMed]
  14. P. A. Greet, “Coating stress in Fabry–Perot étalons,” Appl. Opt. 25, 3328–3329 (1986).
    [CrossRef] [PubMed]
  15. R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
    [CrossRef]
  16. A. Hofmann, “Quasi-monochromatic synchrotron radiation from undulators,” Nucl. Instrum. Methods 152, 17–21 (1978).
    [CrossRef]
  17. B. M. Kincaid, “A short-period helical wiggler as an improved source of synchrotron radiation,” J. Appl. Phys. 48, 2684–2691 (1977).
    [CrossRef]
  18. D. F. Alferov, Y. A. Bashmakov, E. G. Bessonov, “Undulator radiation,” Sov. Phys. Tech. Phys. 18, 1336–1339 (1974).
  19. ALS Handbook, Pub-643, Rev. 2 (Lawrence Berkeley Laboratory, Berkeley, Calif., 1989).
  20. R. P. Walker, “Calculation of undulator radiation spectral and angular distributions,” Rev. Sci. Instrum. 60, 1816–1819 (1989).
    [CrossRef]
  21. B. Kincaid, “Random errors in undulators and their effects on the radiation spectrum,” J. Opt. Soc. Am. B 2, 1294–1306 (1985).
    [CrossRef]
  22. B. Kincaid, “Analysis of field errors in existing undulators,” Nucl. Instrum. Methods A 291, 363–370 (1990).
    [CrossRef]
  23. P. A. Tipler, Foundations of Modern Physics (Worth, New York, 1969), p. 209.
  24. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 17, p. 663. Equation (7) is obtained when propagation is described in terms of 1/e measures.
  25. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon Press, New York, 1984), Chap. 7, p. 316.
  26. D. Attwood, K. Halbach, K. J. Kim, “Tunable coherent x-rays,” Science 228, 1265–1272 (1985).
    [CrossRef] [PubMed]
  27. For further discussion, see K. J. Kim, “Characteristics of synchrotron radiation,” in Physics of Particle Accelerators, M. Month, M. Dienes, eds. (American Institute of Physics, New York, 1989), p. 565.
  28. M. C. Hettrick, J. H. Underwood, “Stigmatic high throughput monochromator for soft x-rays,” Appl. Opt. 25, 4228–4231 (1986).
    [CrossRef] [PubMed]
  29. R. L. Kauffman, D. W. Phillon, R. C. Spitzer, “X-ray production 13 nm from laser-produced plasmas for projection x-ray lithography applications,” Appl. Opt. 32, 6897–6900 (1993).
    [CrossRef] [PubMed]
  30. P. Hariharan, Optical Interferometry (Academic, New York, 1985).
  31. D. Malacara, Optical Shop Testing (Wiley, New York, 1992).
  32. J. C. Wyant, “Double frequency grating lateral shear interferometer,” Appl. Opt. 12, 2057–2060 (1973).
    [CrossRef] [PubMed]
  33. R. N. Smartt, “Zone plate interferometer,” Appl. Opt. 13, 1093–1099 (1974).
    [CrossRef] [PubMed]
  34. A. V. Baez, “Fresnel zone plate for optical image formation using extreme ultraviolet and soft x radiation,” J. Opt. Soc. Am. 51, 405–412 (1961); G. Schmahl, D. Rudolph, P. Guttmann, O. Christ, “Zone plates for x-ray microscopy,” in X-Ray Microscopy, G. Schmahl, D. Rudolph, eds. (Springer-Verlag, Berlin, 1984), p. 63.
    [CrossRef]
  35. E. H. Anderson, D. Kern, “Nanofabrication of zone plates for x-ray microscopy,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 75.
  36. R. N. Smartt, W. H. Steel, “Theory and application of point-diffraction interferomters,” Jpn. J. Appl. Phys. 14 (Suppl. 14-1), 351–356 (1975).
  37. W. Meyer-Ilse, M. Koike, R. Beguiristain, J. Maser, D. Attwood, “X-ray microscopy resource center at the Advanced Light Source,” in Soft X-Ray Microscopy, C. J. Jacobsen, J. E. Trebes, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1741, 112–115 (1992).
  38. M. Koike, T. Namioka, “Merit function for the design of grating instruments,” Appl. Opt. (to be published).
  39. M. C. Hettrick, J. Underwood, P. Batson, M. J. Eckart, “Resolving power of 35,000 (5 mA) in the extreme ultraviolet employing a grazing incidence spectrometer,” Appl. Opt. 27, 200–202 (1988).
    [CrossRef] [PubMed]
  40. M. C. Hettrick, “Surface normal rotation: a new technique for grazing incidence monochromators,” Appl. Opt. 31, 7174–7178 (1992).
    [CrossRef] [PubMed]

1993 (3)

1992 (5)

M. C. Hettrick, “Surface normal rotation: a new technique for grazing incidence monochromators,” Appl. Opt. 31, 7174–7178 (1992).
[CrossRef] [PubMed]

Estimates of future memory chip sizes are based on past trends. For example, see P. Burggraaf, “Lithography’s leading edge, part 2: I-line and beyond,” Semiconductor Int. 15, 52–56(1992).

D. Attwood, “New opportunities at soft x-ray wavelengths,” Phys. Today 45 (8), 24–31 (1992).
[CrossRef]

E. M. Gullikson, J. H. Underwood, P. C. Batson, V. Nikitin, “A soft x-ray/EUV reflectometer based on a laser produced plasma source,” J. X-Ray Sci. Technol. 3, 283–299 (1992).
[CrossRef]

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

1991 (1)

1990 (2)

J. E. Bjorkholm, J. Bokor, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Rabb, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicsz, D. L. White, D. L. Windt, O. R. Wood, J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: Printing of features smaller than 0.1 μm,” J. Vac. Sci. Technol. B 8, 1509–1513 (1990).
[CrossRef]

B. Kincaid, “Analysis of field errors in existing undulators,” Nucl. Instrum. Methods A 291, 363–370 (1990).
[CrossRef]

1989 (1)

R. P. Walker, “Calculation of undulator radiation spectral and angular distributions,” Rev. Sci. Instrum. 60, 1816–1819 (1989).
[CrossRef]

1988 (1)

1986 (2)

1985 (2)

1978 (1)

A. Hofmann, “Quasi-monochromatic synchrotron radiation from undulators,” Nucl. Instrum. Methods 152, 17–21 (1978).
[CrossRef]

1977 (1)

B. M. Kincaid, “A short-period helical wiggler as an improved source of synchrotron radiation,” J. Appl. Phys. 48, 2684–2691 (1977).
[CrossRef]

1975 (1)

R. N. Smartt, W. H. Steel, “Theory and application of point-diffraction interferomters,” Jpn. J. Appl. Phys. 14 (Suppl. 14-1), 351–356 (1975).

1974 (2)

R. N. Smartt, “Zone plate interferometer,” Appl. Opt. 13, 1093–1099 (1974).
[CrossRef] [PubMed]

D. F. Alferov, Y. A. Bashmakov, E. G. Bessonov, “Undulator radiation,” Sov. Phys. Tech. Phys. 18, 1336–1339 (1974).

1973 (1)

1966 (1)

1961 (1)

Alferov, D. F.

D. F. Alferov, Y. A. Bashmakov, E. G. Bessonov, “Undulator radiation,” Sov. Phys. Tech. Phys. 18, 1336–1339 (1974).

Anderson, E. H.

E. H. Anderson, D. Kern, “Nanofabrication of zone plates for x-ray microscopy,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 75.

Attwood, D.

D. Attwood, “New opportunities at soft x-ray wavelengths,” Phys. Today 45 (8), 24–31 (1992).
[CrossRef]

D. Attwood, K. Halbach, K. J. Kim, “Tunable coherent x-rays,” Science 228, 1265–1272 (1985).
[CrossRef] [PubMed]

W. Meyer-Ilse, M. Koike, R. Beguiristain, J. Maser, D. Attwood, “X-ray microscopy resource center at the Advanced Light Source,” in Soft X-Ray Microscopy, C. J. Jacobsen, J. E. Trebes, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1741, 112–115 (1992).

Baez, A. V.

Bashmakov, Y. A.

D. F. Alferov, Y. A. Bashmakov, E. G. Bessonov, “Undulator radiation,” Sov. Phys. Tech. Phys. 18, 1336–1339 (1974).

Batson, P.

Batson, P. C.

E. M. Gullikson, J. H. Underwood, P. C. Batson, V. Nikitin, “A soft x-ray/EUV reflectometer based on a laser produced plasma source,” J. X-Ray Sci. Technol. 3, 283–299 (1992).
[CrossRef]

Batson, P. J.

J. H. Underwood, R. C. C. Perera, J. B. Kortright, P. J. Batson, C. Capasso, S. H. Liang, W. Ng, A. K. Ray-Chaudhuri, R. K. Cole, G. Chen, Z. Y. Guo, J. Wallace, J. Welnak, G. Margaritondo, F. Cerrina, G. De Stasio, D. Mercanti, M. T. Ciotti, “The MAXIMUM Photoelectron Microscope at the University of Wisconsin’s Synchrotron Radiation Center,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 220.

Beguiristain, R.

W. Meyer-Ilse, M. Koike, R. Beguiristain, J. Maser, D. Attwood, “X-ray microscopy resource center at the Advanced Light Source,” in Soft X-Ray Microscopy, C. J. Jacobsen, J. E. Trebes, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1741, 112–115 (1992).

Bessonov, E. G.

D. F. Alferov, Y. A. Bashmakov, E. G. Bessonov, “Undulator radiation,” Sov. Phys. Tech. Phys. 18, 1336–1339 (1974).

Bjorkholm, J. E.

J. E. Bjorkholm, J. Bokor, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Rabb, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicsz, D. L. White, D. L. Windt, O. R. Wood, J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: Printing of features smaller than 0.1 μm,” J. Vac. Sci. Technol. B 8, 1509–1513 (1990).
[CrossRef]

Bokor, J.

J. E. Bjorkholm, J. Bokor, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Rabb, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicsz, D. L. White, D. L. Windt, O. R. Wood, J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: Printing of features smaller than 0.1 μm,” J. Vac. Sci. Technol. B 8, 1509–1513 (1990).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon Press, New York, 1984), Chap. 7, p. 316.

Bruning, J. H.

J. E. Bjorkholm, J. Bokor, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Rabb, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicsz, D. L. White, D. L. Windt, O. R. Wood, J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: Printing of features smaller than 0.1 μm,” J. Vac. Sci. Technol. B 8, 1509–1513 (1990).
[CrossRef]

Burggraaf, P.

Estimates of future memory chip sizes are based on past trends. For example, see P. Burggraaf, “Lithography’s leading edge, part 2: I-line and beyond,” Semiconductor Int. 15, 52–56(1992).

Capasso, C.

J. H. Underwood, R. C. C. Perera, J. B. Kortright, P. J. Batson, C. Capasso, S. H. Liang, W. Ng, A. K. Ray-Chaudhuri, R. K. Cole, G. Chen, Z. Y. Guo, J. Wallace, J. Welnak, G. Margaritondo, F. Cerrina, G. De Stasio, D. Mercanti, M. T. Ciotti, “The MAXIMUM Photoelectron Microscope at the University of Wisconsin’s Synchrotron Radiation Center,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 220.

Celler, G. K.

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Cerrina, F.

J. H. Underwood, R. C. C. Perera, J. B. Kortright, P. J. Batson, C. Capasso, S. H. Liang, W. Ng, A. K. Ray-Chaudhuri, R. K. Cole, G. Chen, Z. Y. Guo, J. Wallace, J. Welnak, G. Margaritondo, F. Cerrina, G. De Stasio, D. Mercanti, M. T. Ciotti, “The MAXIMUM Photoelectron Microscope at the University of Wisconsin’s Synchrotron Radiation Center,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 220.

Chen, G.

J. H. Underwood, R. C. C. Perera, J. B. Kortright, P. J. Batson, C. Capasso, S. H. Liang, W. Ng, A. K. Ray-Chaudhuri, R. K. Cole, G. Chen, Z. Y. Guo, J. Wallace, J. Welnak, G. Margaritondo, F. Cerrina, G. De Stasio, D. Mercanti, M. T. Ciotti, “The MAXIMUM Photoelectron Microscope at the University of Wisconsin’s Synchrotron Radiation Center,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 220.

Ciotti, M. T.

J. H. Underwood, R. C. C. Perera, J. B. Kortright, P. J. Batson, C. Capasso, S. H. Liang, W. Ng, A. K. Ray-Chaudhuri, R. K. Cole, G. Chen, Z. Y. Guo, J. Wallace, J. Welnak, G. Margaritondo, F. Cerrina, G. De Stasio, D. Mercanti, M. T. Ciotti, “The MAXIMUM Photoelectron Microscope at the University of Wisconsin’s Synchrotron Radiation Center,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 220.

Cole, R. K.

J. H. Underwood, R. C. C. Perera, J. B. Kortright, P. J. Batson, C. Capasso, S. H. Liang, W. Ng, A. K. Ray-Chaudhuri, R. K. Cole, G. Chen, Z. Y. Guo, J. Wallace, J. Welnak, G. Margaritondo, F. Cerrina, G. De Stasio, D. Mercanti, M. T. Ciotti, “The MAXIMUM Photoelectron Microscope at the University of Wisconsin’s Synchrotron Radiation Center,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 220.

De Stasio, G.

J. H. Underwood, R. C. C. Perera, J. B. Kortright, P. J. Batson, C. Capasso, S. H. Liang, W. Ng, A. K. Ray-Chaudhuri, R. K. Cole, G. Chen, Z. Y. Guo, J. Wallace, J. Welnak, G. Margaritondo, F. Cerrina, G. De Stasio, D. Mercanti, M. T. Ciotti, “The MAXIMUM Photoelectron Microscope at the University of Wisconsin’s Synchrotron Radiation Center,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 220.

Denham, P. E.

Eckart, M. J.

Ennos, A. E.

Freeman, R. R.

J. E. Bjorkholm, J. Bokor, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Rabb, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicsz, D. L. White, D. L. Windt, O. R. Wood, J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: Printing of features smaller than 0.1 μm,” J. Vac. Sci. Technol. B 8, 1509–1513 (1990).
[CrossRef]

Greet, P. A.

Gregus, J.

J. E. Bjorkholm, J. Bokor, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Rabb, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicsz, D. L. White, D. L. Windt, O. R. Wood, J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: Printing of features smaller than 0.1 μm,” J. Vac. Sci. Technol. B 8, 1509–1513 (1990).
[CrossRef]

Gullikson, E. M.

Guo, Z. Y.

J. H. Underwood, R. C. C. Perera, J. B. Kortright, P. J. Batson, C. Capasso, S. H. Liang, W. Ng, A. K. Ray-Chaudhuri, R. K. Cole, G. Chen, Z. Y. Guo, J. Wallace, J. Welnak, G. Margaritondo, F. Cerrina, G. De Stasio, D. Mercanti, M. T. Ciotti, “The MAXIMUM Photoelectron Microscope at the University of Wisconsin’s Synchrotron Radiation Center,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 220.

Halbach, K.

D. Attwood, K. Halbach, K. J. Kim, “Tunable coherent x-rays,” Science 228, 1265–1272 (1985).
[CrossRef] [PubMed]

Hariharan, P.

P. Hariharan, Optical Interferometry (Academic, New York, 1985).

Hettrick, M. C.

Hofmann, A.

A. Hofmann, “Quasi-monochromatic synchrotron radiation from undulators,” Nucl. Instrum. Methods 152, 17–21 (1978).
[CrossRef]

Hull, R.

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Jewell, T. E.

J. E. Bjorkholm, J. Bokor, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Rabb, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicsz, D. L. White, D. L. Windt, O. R. Wood, J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: Printing of features smaller than 0.1 μm,” J. Vac. Sci. Technol. B 8, 1509–1513 (1990).
[CrossRef]

Kauffman, R. L.

Kern, D.

E. H. Anderson, D. Kern, “Nanofabrication of zone plates for x-ray microscopy,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 75.

Kim, K. J.

D. Attwood, K. Halbach, K. J. Kim, “Tunable coherent x-rays,” Science 228, 1265–1272 (1985).
[CrossRef] [PubMed]

Kincaid, B.

B. Kincaid, “Analysis of field errors in existing undulators,” Nucl. Instrum. Methods A 291, 363–370 (1990).
[CrossRef]

B. Kincaid, “Random errors in undulators and their effects on the radiation spectrum,” J. Opt. Soc. Am. B 2, 1294–1306 (1985).
[CrossRef]

Kincaid, B. M.

B. M. Kincaid, “A short-period helical wiggler as an improved source of synchrotron radiation,” J. Appl. Phys. 48, 2684–2691 (1977).
[CrossRef]

Koike, M.

M. Koike, T. Namioka, “Merit function for the design of grating instruments,” Appl. Opt. (to be published).

W. Meyer-Ilse, M. Koike, R. Beguiristain, J. Maser, D. Attwood, “X-ray microscopy resource center at the Advanced Light Source,” in Soft X-Ray Microscopy, C. J. Jacobsen, J. E. Trebes, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1741, 112–115 (1992).

Kola, R. R.

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Kortright, J. B.

J. B. Kortright, E. M. Gullikson, P. E. Denham, “Masked deposition techniques for achieving multilayer period variations required for short-wavelength (68-Å) soft-x-ray imaging optics,” Appl. Opt. 32, 6961–6968 (1993).
[CrossRef] [PubMed]

J. H. Underwood, R. C. C. Perera, J. B. Kortright, P. J. Batson, C. Capasso, S. H. Liang, W. Ng, A. K. Ray-Chaudhuri, R. K. Cole, G. Chen, Z. Y. Guo, J. Wallace, J. Welnak, G. Margaritondo, F. Cerrina, G. De Stasio, D. Mercanti, M. T. Ciotti, “The MAXIMUM Photoelectron Microscope at the University of Wisconsin’s Synchrotron Radiation Center,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 220.

Liang, S. H.

J. H. Underwood, R. C. C. Perera, J. B. Kortright, P. J. Batson, C. Capasso, S. H. Liang, W. Ng, A. K. Ray-Chaudhuri, R. K. Cole, G. Chen, Z. Y. Guo, J. Wallace, J. Welnak, G. Margaritondo, F. Cerrina, G. De Stasio, D. Mercanti, M. T. Ciotti, “The MAXIMUM Photoelectron Microscope at the University of Wisconsin’s Synchrotron Radiation Center,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 220.

MacDowell, A. A.

J. E. Bjorkholm, J. Bokor, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Rabb, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicsz, D. L. White, D. L. Windt, O. R. Wood, J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: Printing of features smaller than 0.1 μm,” J. Vac. Sci. Technol. B 8, 1509–1513 (1990).
[CrossRef]

Malacara, D.

D. Malacara, Optical Shop Testing (Wiley, New York, 1992).

Mansfield, W. M.

J. E. Bjorkholm, J. Bokor, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Rabb, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicsz, D. L. White, D. L. Windt, O. R. Wood, J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: Printing of features smaller than 0.1 μm,” J. Vac. Sci. Technol. B 8, 1509–1513 (1990).
[CrossRef]

Margaritondo, G.

J. H. Underwood, R. C. C. Perera, J. B. Kortright, P. J. Batson, C. Capasso, S. H. Liang, W. Ng, A. K. Ray-Chaudhuri, R. K. Cole, G. Chen, Z. Y. Guo, J. Wallace, J. Welnak, G. Margaritondo, F. Cerrina, G. De Stasio, D. Mercanti, M. T. Ciotti, “The MAXIMUM Photoelectron Microscope at the University of Wisconsin’s Synchrotron Radiation Center,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 220.

Maser, J.

W. Meyer-Ilse, M. Koike, R. Beguiristain, J. Maser, D. Attwood, “X-ray microscopy resource center at the Advanced Light Source,” in Soft X-Ray Microscopy, C. J. Jacobsen, J. E. Trebes, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1741, 112–115 (1992).

Mercanti, D.

J. H. Underwood, R. C. C. Perera, J. B. Kortright, P. J. Batson, C. Capasso, S. H. Liang, W. Ng, A. K. Ray-Chaudhuri, R. K. Cole, G. Chen, Z. Y. Guo, J. Wallace, J. Welnak, G. Margaritondo, F. Cerrina, G. De Stasio, D. Mercanti, M. T. Ciotti, “The MAXIMUM Photoelectron Microscope at the University of Wisconsin’s Synchrotron Radiation Center,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 220.

Meyer-Ilse, W.

W. Meyer-Ilse, M. Koike, R. Beguiristain, J. Maser, D. Attwood, “X-ray microscopy resource center at the Advanced Light Source,” in Soft X-Ray Microscopy, C. J. Jacobsen, J. E. Trebes, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1741, 112–115 (1992).

Namioka, T.

M. Koike, T. Namioka, “Merit function for the design of grating instruments,” Appl. Opt. (to be published).

Ng, W.

J. H. Underwood, R. C. C. Perera, J. B. Kortright, P. J. Batson, C. Capasso, S. H. Liang, W. Ng, A. K. Ray-Chaudhuri, R. K. Cole, G. Chen, Z. Y. Guo, J. Wallace, J. Welnak, G. Margaritondo, F. Cerrina, G. De Stasio, D. Mercanti, M. T. Ciotti, “The MAXIMUM Photoelectron Microscope at the University of Wisconsin’s Synchrotron Radiation Center,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 220.

Nguyen, K.

Nikitin, V.

E. M. Gullikson, J. H. Underwood, P. C. Batson, V. Nikitin, “A soft x-ray/EUV reflectometer based on a laser produced plasma source,” J. X-Ray Sci. Technol. 3, 283–299 (1992).
[CrossRef]

Perera, R. C. C.

J. H. Underwood, R. C. C. Perera, J. B. Kortright, P. J. Batson, C. Capasso, S. H. Liang, W. Ng, A. K. Ray-Chaudhuri, R. K. Cole, G. Chen, Z. Y. Guo, J. Wallace, J. Welnak, G. Margaritondo, F. Cerrina, G. De Stasio, D. Mercanti, M. T. Ciotti, “The MAXIMUM Photoelectron Microscope at the University of Wisconsin’s Synchrotron Radiation Center,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 220.

Phillon, D. W.

Rabb, E. L.

J. E. Bjorkholm, J. Bokor, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Rabb, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicsz, D. L. White, D. L. Windt, O. R. Wood, J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: Printing of features smaller than 0.1 μm,” J. Vac. Sci. Technol. B 8, 1509–1513 (1990).
[CrossRef]

Ray-Chaudhuri, A. K.

J. H. Underwood, R. C. C. Perera, J. B. Kortright, P. J. Batson, C. Capasso, S. H. Liang, W. Ng, A. K. Ray-Chaudhuri, R. K. Cole, G. Chen, Z. Y. Guo, J. Wallace, J. Welnak, G. Margaritondo, F. Cerrina, G. De Stasio, D. Mercanti, M. T. Ciotti, “The MAXIMUM Photoelectron Microscope at the University of Wisconsin’s Synchrotron Radiation Center,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 220.

Rosen, R. S.

D. G. Stearns, R. S. Rosen, S. P. Vernon, “Normal-incidence x-ray mirror for 7 nm,” Opt. Lett. 16, 1283–1285 (1991).
[CrossRef] [PubMed]

D. Stearns, R. S. Rosen, S. P. Vernon, “High-performance multilayer mirrors for soft x-ray projection lithography,” in Multilayer Optics for Advanced X-ray ApplicationsN. M. Ceglio, ed., Proc. Soc. Photo-Opt. Instrum. Eng. Proc.1547, 2 (1991).

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 17, p. 663. Equation (7) is obtained when propagation is described in terms of 1/e measures.

Silfvast, W. T.

J. E. Bjorkholm, J. Bokor, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Rabb, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicsz, D. L. White, D. L. Windt, O. R. Wood, J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: Printing of features smaller than 0.1 μm,” J. Vac. Sci. Technol. B 8, 1509–1513 (1990).
[CrossRef]

Smartt, R. N.

R. N. Smartt, W. H. Steel, “Theory and application of point-diffraction interferomters,” Jpn. J. Appl. Phys. 14 (Suppl. 14-1), 351–356 (1975).

R. N. Smartt, “Zone plate interferometer,” Appl. Opt. 13, 1093–1099 (1974).
[CrossRef] [PubMed]

Spitzer, R. C.

Stearns, D.

D. Stearns, R. S. Rosen, S. P. Vernon, “High-performance multilayer mirrors for soft x-ray projection lithography,” in Multilayer Optics for Advanced X-ray ApplicationsN. M. Ceglio, ed., Proc. Soc. Photo-Opt. Instrum. Eng. Proc.1547, 2 (1991).

Stearns, D. G.

Steel, W. H.

R. N. Smartt, W. H. Steel, “Theory and application of point-diffraction interferomters,” Jpn. J. Appl. Phys. 14 (Suppl. 14-1), 351–356 (1975).

Szeto, L. H.

J. E. Bjorkholm, J. Bokor, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Rabb, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicsz, D. L. White, D. L. Windt, O. R. Wood, J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: Printing of features smaller than 0.1 μm,” J. Vac. Sci. Technol. B 8, 1509–1513 (1990).
[CrossRef]

Tennant, D. M.

J. E. Bjorkholm, J. Bokor, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Rabb, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicsz, D. L. White, D. L. Windt, O. R. Wood, J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: Printing of features smaller than 0.1 μm,” J. Vac. Sci. Technol. B 8, 1509–1513 (1990).
[CrossRef]

Tipler, P. A.

P. A. Tipler, Foundations of Modern Physics (Worth, New York, 1969), p. 209.

Underwood, J.

Underwood, J. H.

E. M. Gullikson, J. H. Underwood, P. C. Batson, V. Nikitin, “A soft x-ray/EUV reflectometer based on a laser produced plasma source,” J. X-Ray Sci. Technol. 3, 283–299 (1992).
[CrossRef]

M. C. Hettrick, J. H. Underwood, “Stigmatic high throughput monochromator for soft x-rays,” Appl. Opt. 25, 4228–4231 (1986).
[CrossRef] [PubMed]

J. H. Underwood, R. C. C. Perera, J. B. Kortright, P. J. Batson, C. Capasso, S. H. Liang, W. Ng, A. K. Ray-Chaudhuri, R. K. Cole, G. Chen, Z. Y. Guo, J. Wallace, J. Welnak, G. Margaritondo, F. Cerrina, G. De Stasio, D. Mercanti, M. T. Ciotti, “The MAXIMUM Photoelectron Microscope at the University of Wisconsin’s Synchrotron Radiation Center,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 220.

Vernon, S. P.

D. G. Stearns, R. S. Rosen, S. P. Vernon, “Normal-incidence x-ray mirror for 7 nm,” Opt. Lett. 16, 1283–1285 (1991).
[CrossRef] [PubMed]

D. Stearns, R. S. Rosen, S. P. Vernon, “High-performance multilayer mirrors for soft x-ray projection lithography,” in Multilayer Optics for Advanced X-ray ApplicationsN. M. Ceglio, ed., Proc. Soc. Photo-Opt. Instrum. Eng. Proc.1547, 2 (1991).

Volkert, C. A.

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Walker, R. P.

R. P. Walker, “Calculation of undulator radiation spectral and angular distributions,” Rev. Sci. Instrum. 60, 1816–1819 (1989).
[CrossRef]

Wallace, J.

J. H. Underwood, R. C. C. Perera, J. B. Kortright, P. J. Batson, C. Capasso, S. H. Liang, W. Ng, A. K. Ray-Chaudhuri, R. K. Cole, G. Chen, Z. Y. Guo, J. Wallace, J. Welnak, G. Margaritondo, F. Cerrina, G. De Stasio, D. Mercanti, M. T. Ciotti, “The MAXIMUM Photoelectron Microscope at the University of Wisconsin’s Synchrotron Radiation Center,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 220.

Waskiewicsz, W. K.

J. E. Bjorkholm, J. Bokor, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Rabb, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicsz, D. L. White, D. L. Windt, O. R. Wood, J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: Printing of features smaller than 0.1 μm,” J. Vac. Sci. Technol. B 8, 1509–1513 (1990).
[CrossRef]

Waskiewicz, W. K.

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Weir, B. E.

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Welford, W. T.

W. T. Welford, Aberrations of Optical Systems (Hilger, Bristol, UK, 1986), Chap. 13, p. 241.

Welnak, J.

J. H. Underwood, R. C. C. Perera, J. B. Kortright, P. J. Batson, C. Capasso, S. H. Liang, W. Ng, A. K. Ray-Chaudhuri, R. K. Cole, G. Chen, Z. Y. Guo, J. Wallace, J. Welnak, G. Margaritondo, F. Cerrina, G. De Stasio, D. Mercanti, M. T. Ciotti, “The MAXIMUM Photoelectron Microscope at the University of Wisconsin’s Synchrotron Radiation Center,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 220.

White, D. L.

J. E. Bjorkholm, J. Bokor, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Rabb, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicsz, D. L. White, D. L. Windt, O. R. Wood, J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: Printing of features smaller than 0.1 μm,” J. Vac. Sci. Technol. B 8, 1509–1513 (1990).
[CrossRef]

Windt, D. L.

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

J. E. Bjorkholm, J. Bokor, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Rabb, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicsz, D. L. White, D. L. Windt, O. R. Wood, J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: Printing of features smaller than 0.1 μm,” J. Vac. Sci. Technol. B 8, 1509–1513 (1990).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon Press, New York, 1984), Chap. 7, p. 316.

Wood, O. R.

J. E. Bjorkholm, J. Bokor, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Rabb, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicsz, D. L. White, D. L. Windt, O. R. Wood, J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: Printing of features smaller than 0.1 μm,” J. Vac. Sci. Technol. B 8, 1509–1513 (1990).
[CrossRef]

Wyant, J. C.

Appl. Opt. (10)

J. B. Kortright, E. M. Gullikson, P. E. Denham, “Masked deposition techniques for achieving multilayer period variations required for short-wavelength (68-Å) soft-x-ray imaging optics,” Appl. Opt. 32, 6961–6968 (1993).
[CrossRef] [PubMed]

J. Underwood, E. M. Gullikson, K. Nguyen, “Tarnishing of molybdenum/silicon multilayer x-ray mirrors,” Appl. Opt. 32, 6985–6990 (1993).
[CrossRef] [PubMed]

A. E. Ennos, “Stresses developed in optical film coatings,” Appl. Opt. 5, 51–61 (1966).
[CrossRef] [PubMed]

P. A. Greet, “Coating stress in Fabry–Perot étalons,” Appl. Opt. 25, 3328–3329 (1986).
[CrossRef] [PubMed]

M. C. Hettrick, J. H. Underwood, “Stigmatic high throughput monochromator for soft x-rays,” Appl. Opt. 25, 4228–4231 (1986).
[CrossRef] [PubMed]

R. L. Kauffman, D. W. Phillon, R. C. Spitzer, “X-ray production 13 nm from laser-produced plasmas for projection x-ray lithography applications,” Appl. Opt. 32, 6897–6900 (1993).
[CrossRef] [PubMed]

J. C. Wyant, “Double frequency grating lateral shear interferometer,” Appl. Opt. 12, 2057–2060 (1973).
[CrossRef] [PubMed]

R. N. Smartt, “Zone plate interferometer,” Appl. Opt. 13, 1093–1099 (1974).
[CrossRef] [PubMed]

M. C. Hettrick, J. Underwood, P. Batson, M. J. Eckart, “Resolving power of 35,000 (5 mA) in the extreme ultraviolet employing a grazing incidence spectrometer,” Appl. Opt. 27, 200–202 (1988).
[CrossRef] [PubMed]

M. C. Hettrick, “Surface normal rotation: a new technique for grazing incidence monochromators,” Appl. Opt. 31, 7174–7178 (1992).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

J. Appl. Phys. (1)

B. M. Kincaid, “A short-period helical wiggler as an improved source of synchrotron radiation,” J. Appl. Phys. 48, 2684–2691 (1977).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

J. E. Bjorkholm, J. Bokor, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Rabb, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicsz, D. L. White, D. L. Windt, O. R. Wood, J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: Printing of features smaller than 0.1 μm,” J. Vac. Sci. Technol. B 8, 1509–1513 (1990).
[CrossRef]

J. X-Ray Sci. Technol. (1)

E. M. Gullikson, J. H. Underwood, P. C. Batson, V. Nikitin, “A soft x-ray/EUV reflectometer based on a laser produced plasma source,” J. X-Ray Sci. Technol. 3, 283–299 (1992).
[CrossRef]

Jpn. J. Appl. Phys. (1)

R. N. Smartt, W. H. Steel, “Theory and application of point-diffraction interferomters,” Jpn. J. Appl. Phys. 14 (Suppl. 14-1), 351–356 (1975).

Nucl. Instrum. Methods (1)

A. Hofmann, “Quasi-monochromatic synchrotron radiation from undulators,” Nucl. Instrum. Methods 152, 17–21 (1978).
[CrossRef]

Nucl. Instrum. Methods A (1)

B. Kincaid, “Analysis of field errors in existing undulators,” Nucl. Instrum. Methods A 291, 363–370 (1990).
[CrossRef]

Opt. Lett. (1)

Phys. Today (1)

D. Attwood, “New opportunities at soft x-ray wavelengths,” Phys. Today 45 (8), 24–31 (1992).
[CrossRef]

Rev. Sci. Instrum. (1)

R. P. Walker, “Calculation of undulator radiation spectral and angular distributions,” Rev. Sci. Instrum. 60, 1816–1819 (1989).
[CrossRef]

Science (1)

D. Attwood, K. Halbach, K. J. Kim, “Tunable coherent x-rays,” Science 228, 1265–1272 (1985).
[CrossRef] [PubMed]

Semiconductor Int. (1)

Estimates of future memory chip sizes are based on past trends. For example, see P. Burggraaf, “Lithography’s leading edge, part 2: I-line and beyond,” Semiconductor Int. 15, 52–56(1992).

Sov. Phys. Tech. Phys. (1)

D. F. Alferov, Y. A. Bashmakov, E. G. Bessonov, “Undulator radiation,” Sov. Phys. Tech. Phys. 18, 1336–1339 (1974).

Other (15)

ALS Handbook, Pub-643, Rev. 2 (Lawrence Berkeley Laboratory, Berkeley, Calif., 1989).

W. T. Welford, Aberrations of Optical Systems (Hilger, Bristol, UK, 1986), Chap. 13, p. 241.

Assumed independent, random surface figure error to arrive at this estimate.

J. H. Underwood, R. C. C. Perera, J. B. Kortright, P. J. Batson, C. Capasso, S. H. Liang, W. Ng, A. K. Ray-Chaudhuri, R. K. Cole, G. Chen, Z. Y. Guo, J. Wallace, J. Welnak, G. Margaritondo, F. Cerrina, G. De Stasio, D. Mercanti, M. T. Ciotti, “The MAXIMUM Photoelectron Microscope at the University of Wisconsin’s Synchrotron Radiation Center,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 220.

Physics of Multilayer Structures. Vol. 7 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992.

D. Stearns, R. S. Rosen, S. P. Vernon, “High-performance multilayer mirrors for soft x-ray projection lithography,” in Multilayer Optics for Advanced X-ray ApplicationsN. M. Ceglio, ed., Proc. Soc. Photo-Opt. Instrum. Eng. Proc.1547, 2 (1991).

For further discussion, see K. J. Kim, “Characteristics of synchrotron radiation,” in Physics of Particle Accelerators, M. Month, M. Dienes, eds. (American Institute of Physics, New York, 1989), p. 565.

W. Meyer-Ilse, M. Koike, R. Beguiristain, J. Maser, D. Attwood, “X-ray microscopy resource center at the Advanced Light Source,” in Soft X-Ray Microscopy, C. J. Jacobsen, J. E. Trebes, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1741, 112–115 (1992).

M. Koike, T. Namioka, “Merit function for the design of grating instruments,” Appl. Opt. (to be published).

E. H. Anderson, D. Kern, “Nanofabrication of zone plates for x-ray microscopy,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), p. 75.

P. A. Tipler, Foundations of Modern Physics (Worth, New York, 1969), p. 209.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 17, p. 663. Equation (7) is obtained when propagation is described in terms of 1/e measures.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon Press, New York, 1984), Chap. 7, p. 316.

P. Hariharan, Optical Interferometry (Academic, New York, 1985).

D. Malacara, Optical Shop Testing (Wiley, New York, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Continuously tunable short-wavelength undulator radiation is generated by the passage of relativistic electrons through a periodic magnet structure.

Fig. 2
Fig. 2

Power anticipated in the central radiation cone (n = 1, Δλ/λ ≃ 1/N) as a function of photon energy for (a) 5.5-cm and (b) 8.0-cm period undulators at the ALS, a 1.5-GeV electron storage ring. Note that Δλ/λ is different in the two cases because of differences in N.

Fig. 3
Fig. 3

Harmonic spectrum anticipated for a 5.5-cm period undulator with K chosen so as to have the fundamental (n = 1) radiate at (a) 130 Å and (b) at 70 Å. (c), (d) The spectrum for an 8.0-cm period undulator radiating in the fundamental wavelengths of 130 and 70 Å, respectively.

Fig. 4
Fig. 4

Predicted coherent power tuning curves for (a) 5.5-cm and (b) 8.0-cm period magnet structures at the ALS. These curves assume use of pinhole spatial filtering, use of a monochromator of relative spectral bandpass Δλ/λ = 10−3, and a monochromator efficiency of 33%,

Fig. 5
Fig. 5

Two-frequency grating lateral shearing interferometer testing a concave mirror. The interference pattern formed by the two first-order diffracted wave fronts is related to the gradient (in the direction of the shear) of the mirror aberration.

Fig. 6
Fig. 6

Zone plate interferometer testing a concave mirror. The interference pattern is formed by the (0, 1) diffracted wave front (reference) and the (1, 0) diffracted wave front (measurement).

Fig. 7
Fig. 7

Details of the point-diffraction interferometer. The spherical reference wave front is generated by diffraction from a pinhole in the partially absorbing membrane.

Fig. 8
Fig. 8

Point-diffraction interferometer testing of an EUV lithographic imaging system. The source (or its image) and the point-diffraction interferometer are placed at the conjugates of the system.

Fig. 9
Fig. 9

Preliminary diagram showing beam line optics for the development and the application of EUV interferometry. The design includes water-cooled apertures, a pop-up mirror, a Kirk-patrick–Baez (KB) prefocusing system, a variable-spacing spherical grating monochromator, and an interferometer.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

λ x = λ u 2 γ 2 ( 1 + K 2 2 + γ 2 θ 2 ) ,
K = e B o λ u 2 π m c .
Δ λ λ 1 N ,
θ cen = 1 γ * N ,
γ * = γ / ( 1 + K 2 2 ) 1 / 2 ,
P cen π e K 2 γ 2 I 0 λ u ( 1 + K 2 2 ) 2 ,
E λ = 12 , 399 eV Å .
d θ λ 2 π
l coh = λ 2 2 Δ λ ,
P coh = P con ( λ / 2 π ) 2 ( d θ ) h , v 2
Δ r ( λ / 2 ) ( R / a ) ,
f 4 N z ( Δ r ) 2 λ ,
r 2 N z Δ r ,

Metrics