Abstract

A design of a diode-pumped Nd:YAG laser for use as the driver for a soft-x-ray projection lithography system is described. This laser will output up to 1 J per pulse with a 2- to 5-ns pulse duration and a 400-Hz pulse repetition rate. The design employs microchannel-cooled diode laser arrays, zigzag slab energy storage, a regenerative amplifier cavity that uses phase conjugator beam correction for near-diffraction-limited beam quality, and stimulated Brillouin scattering pulse compression to achieve the required pulse length.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Kauffman, D. W. Phillion, “X-ray production efficiency at 130 Å from laser-produced plasmas,” in Soft-X-Ray Projection Lithography, J. Bokor, ed., Vol. 12 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 68–71.
  2. J. L. Miller, C. B. Dane, L. Zapata, L. Hackel, J. Abate, “Neodymium:glass zigzag slab regenerative amplifier laser system for x-ray lithography,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 90.
  3. R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz, M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” J. Quantum Electron. 28, 966–976 (1992).
    [CrossRef]
  4. G. Albrecht, R. J. Beach, B. Comaskey, “High-repetition-rate diode-pumped solid state lasers,” in Energy and Technology Review, UCRL-52000-92-6 (Lawrence Livermore National Laboratory, Livermore CA 94550, 1992).
  5. D. C. Hanna, B. Luther-Davies, R. C. Smith, “Single longitudinal mode selection of high power actively Q-switch lasers,” Opto-electronics 4, 249–256 (1972).
    [CrossRef]
  6. Y. K. Park, R. L. Byer, “Electronic linewidth narrowing method for single axial mode operation of Q-switched Nd:YAG lasers,” Optics Commun. 37, 411–416(1981).
    [CrossRef]
  7. See for example. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 385–386.
  8. D. T. Hon, “Pulse compression by stimulated Brillouin scattering,” Opt. Lett. 5, 516–518 (1980).
    [CrossRef] [PubMed]
  9. R. R. Buzyalis, A. S. Dement’ev, E. K. Kosenko, “Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic YAG:Nd laser,” Sov. J. Quantum Electron. 15, 1335–1337 (1985).
    [CrossRef]
  10. E. Gaizhauskas, V. Krushas, N. Ya. Nedbaev, R. A. Petrenko, A. Piskarskas, V. Smil’gyavichyus, “Generation of picosecond pulses as a result of stimulated Brillouin scattering in liquids,” Sov. J. Quantum Electron. 16, 854–855 (1986).
    [CrossRef]
  11. S. B. Papernyi, V. F. Petrov, V. R. Startsev, “Observation of a quasisoliton interaction in stimulated Brillouin scattering,” Sov. Tech. Phys. Lett. 7, 185–186 (1981).
  12. M. J. Damzen, M. H. R. Hutchinson, “High-efficiency laser-pulse compression by stimulated Brillouin scattering,” Opt. Lett. 8, 313–315(1983).
    [CrossRef] [PubMed]
  13. V. A. Gorbunov, S. B. Papernyi, V. F. Petrov, V. R. Startsev, “Time compression of pulses in the course of stimulated Brillouin scattering in gases,” Sov. J. Quantum Electron. 13, 900–905(1983).
    [CrossRef]
  14. D. N. G. Roy, D. V. G. L. N. Rao, “Optical pulse narrowing by backward, transient stimulated Brillouin scattering,” J. Appl. Phys. 59, 332–335 (1986).
    [CrossRef]
  15. M. A. Davydov, K. F. Shipilov, T. A. Shmaonov, “Formation of highly compressed stimulated Brillouin scattering pulses in liquids,” Sov. J. Quantum Electron. 16, 1402–1403 (1986).
    [CrossRef]
  16. R. Fedosejevs, A. A. Offenberger, “Subnanosecond pulses from a KrF Laser pumped SF6 Brillouin amplifier,” IEEE J Quantum Electron. 21, 1558–1562 (1985).
    [CrossRef]
  17. C. B. Dane, W. A. Neuman, L. A. Hackel, “High energy SBS pulse compression,” submitted to J. Quantum Electron. (1992).

1992

R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz, M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” J. Quantum Electron. 28, 966–976 (1992).
[CrossRef]

1986

E. Gaizhauskas, V. Krushas, N. Ya. Nedbaev, R. A. Petrenko, A. Piskarskas, V. Smil’gyavichyus, “Generation of picosecond pulses as a result of stimulated Brillouin scattering in liquids,” Sov. J. Quantum Electron. 16, 854–855 (1986).
[CrossRef]

D. N. G. Roy, D. V. G. L. N. Rao, “Optical pulse narrowing by backward, transient stimulated Brillouin scattering,” J. Appl. Phys. 59, 332–335 (1986).
[CrossRef]

M. A. Davydov, K. F. Shipilov, T. A. Shmaonov, “Formation of highly compressed stimulated Brillouin scattering pulses in liquids,” Sov. J. Quantum Electron. 16, 1402–1403 (1986).
[CrossRef]

1985

R. Fedosejevs, A. A. Offenberger, “Subnanosecond pulses from a KrF Laser pumped SF6 Brillouin amplifier,” IEEE J Quantum Electron. 21, 1558–1562 (1985).
[CrossRef]

R. R. Buzyalis, A. S. Dement’ev, E. K. Kosenko, “Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic YAG:Nd laser,” Sov. J. Quantum Electron. 15, 1335–1337 (1985).
[CrossRef]

1983

M. J. Damzen, M. H. R. Hutchinson, “High-efficiency laser-pulse compression by stimulated Brillouin scattering,” Opt. Lett. 8, 313–315(1983).
[CrossRef] [PubMed]

V. A. Gorbunov, S. B. Papernyi, V. F. Petrov, V. R. Startsev, “Time compression of pulses in the course of stimulated Brillouin scattering in gases,” Sov. J. Quantum Electron. 13, 900–905(1983).
[CrossRef]

1981

S. B. Papernyi, V. F. Petrov, V. R. Startsev, “Observation of a quasisoliton interaction in stimulated Brillouin scattering,” Sov. Tech. Phys. Lett. 7, 185–186 (1981).

Y. K. Park, R. L. Byer, “Electronic linewidth narrowing method for single axial mode operation of Q-switched Nd:YAG lasers,” Optics Commun. 37, 411–416(1981).
[CrossRef]

1980

1972

D. C. Hanna, B. Luther-Davies, R. C. Smith, “Single longitudinal mode selection of high power actively Q-switch lasers,” Opto-electronics 4, 249–256 (1972).
[CrossRef]

Abate, J.

J. L. Miller, C. B. Dane, L. Zapata, L. Hackel, J. Abate, “Neodymium:glass zigzag slab regenerative amplifier laser system for x-ray lithography,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 90.

Albrecht, G.

G. Albrecht, R. J. Beach, B. Comaskey, “High-repetition-rate diode-pumped solid state lasers,” in Energy and Technology Review, UCRL-52000-92-6 (Lawrence Livermore National Laboratory, Livermore CA 94550, 1992).

Beach, R.

R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz, M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” J. Quantum Electron. 28, 966–976 (1992).
[CrossRef]

Beach, R. J.

G. Albrecht, R. J. Beach, B. Comaskey, “High-repetition-rate diode-pumped solid state lasers,” in Energy and Technology Review, UCRL-52000-92-6 (Lawrence Livermore National Laboratory, Livermore CA 94550, 1992).

Benett, W. J.

R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz, M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” J. Quantum Electron. 28, 966–976 (1992).
[CrossRef]

Buzyalis, R. R.

R. R. Buzyalis, A. S. Dement’ev, E. K. Kosenko, “Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic YAG:Nd laser,” Sov. J. Quantum Electron. 15, 1335–1337 (1985).
[CrossRef]

Byer, R. L.

Y. K. Park, R. L. Byer, “Electronic linewidth narrowing method for single axial mode operation of Q-switched Nd:YAG lasers,” Optics Commun. 37, 411–416(1981).
[CrossRef]

Comaskey, B.

G. Albrecht, R. J. Beach, B. Comaskey, “High-repetition-rate diode-pumped solid state lasers,” in Energy and Technology Review, UCRL-52000-92-6 (Lawrence Livermore National Laboratory, Livermore CA 94550, 1992).

Comaskey, B. J.

R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz, M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” J. Quantum Electron. 28, 966–976 (1992).
[CrossRef]

Damzen, M. J.

Dane, C. B.

C. B. Dane, W. A. Neuman, L. A. Hackel, “High energy SBS pulse compression,” submitted to J. Quantum Electron. (1992).

J. L. Miller, C. B. Dane, L. Zapata, L. Hackel, J. Abate, “Neodymium:glass zigzag slab regenerative amplifier laser system for x-ray lithography,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 90.

Davydov, M. A.

M. A. Davydov, K. F. Shipilov, T. A. Shmaonov, “Formation of highly compressed stimulated Brillouin scattering pulses in liquids,” Sov. J. Quantum Electron. 16, 1402–1403 (1986).
[CrossRef]

Dement’ev, A. S.

R. R. Buzyalis, A. S. Dement’ev, E. K. Kosenko, “Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic YAG:Nd laser,” Sov. J. Quantum Electron. 15, 1335–1337 (1985).
[CrossRef]

Emanuel, M. A.

R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz, M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” J. Quantum Electron. 28, 966–976 (1992).
[CrossRef]

Fedosejevs, R.

R. Fedosejevs, A. A. Offenberger, “Subnanosecond pulses from a KrF Laser pumped SF6 Brillouin amplifier,” IEEE J Quantum Electron. 21, 1558–1562 (1985).
[CrossRef]

Freitas, B. L.

R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz, M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” J. Quantum Electron. 28, 966–976 (1992).
[CrossRef]

Gaizhauskas, E.

E. Gaizhauskas, V. Krushas, N. Ya. Nedbaev, R. A. Petrenko, A. Piskarskas, V. Smil’gyavichyus, “Generation of picosecond pulses as a result of stimulated Brillouin scattering in liquids,” Sov. J. Quantum Electron. 16, 854–855 (1986).
[CrossRef]

Gorbunov, V. A.

V. A. Gorbunov, S. B. Papernyi, V. F. Petrov, V. R. Startsev, “Time compression of pulses in the course of stimulated Brillouin scattering in gases,” Sov. J. Quantum Electron. 13, 900–905(1983).
[CrossRef]

Hackel, L.

J. L. Miller, C. B. Dane, L. Zapata, L. Hackel, J. Abate, “Neodymium:glass zigzag slab regenerative amplifier laser system for x-ray lithography,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 90.

Hackel, L. A.

C. B. Dane, W. A. Neuman, L. A. Hackel, “High energy SBS pulse compression,” submitted to J. Quantum Electron. (1992).

Hanna, D. C.

D. C. Hanna, B. Luther-Davies, R. C. Smith, “Single longitudinal mode selection of high power actively Q-switch lasers,” Opto-electronics 4, 249–256 (1972).
[CrossRef]

Hon, D. T.

Hutchinson, M. H. R.

Kauffman, R. L.

R. L. Kauffman, D. W. Phillion, “X-ray production efficiency at 130 Å from laser-produced plasmas,” in Soft-X-Ray Projection Lithography, J. Bokor, ed., Vol. 12 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 68–71.

Kosenko, E. K.

R. R. Buzyalis, A. S. Dement’ev, E. K. Kosenko, “Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic YAG:Nd laser,” Sov. J. Quantum Electron. 15, 1335–1337 (1985).
[CrossRef]

Krushas, V.

E. Gaizhauskas, V. Krushas, N. Ya. Nedbaev, R. A. Petrenko, A. Piskarskas, V. Smil’gyavichyus, “Generation of picosecond pulses as a result of stimulated Brillouin scattering in liquids,” Sov. J. Quantum Electron. 16, 854–855 (1986).
[CrossRef]

Luther-Davies, B.

D. C. Hanna, B. Luther-Davies, R. C. Smith, “Single longitudinal mode selection of high power actively Q-switch lasers,” Opto-electronics 4, 249–256 (1972).
[CrossRef]

Miller, J. L.

J. L. Miller, C. B. Dane, L. Zapata, L. Hackel, J. Abate, “Neodymium:glass zigzag slab regenerative amplifier laser system for x-ray lithography,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 90.

Mundinger, D.

R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz, M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” J. Quantum Electron. 28, 966–976 (1992).
[CrossRef]

Nedbaev, N. Ya.

E. Gaizhauskas, V. Krushas, N. Ya. Nedbaev, R. A. Petrenko, A. Piskarskas, V. Smil’gyavichyus, “Generation of picosecond pulses as a result of stimulated Brillouin scattering in liquids,” Sov. J. Quantum Electron. 16, 854–855 (1986).
[CrossRef]

Neuman, W. A.

C. B. Dane, W. A. Neuman, L. A. Hackel, “High energy SBS pulse compression,” submitted to J. Quantum Electron. (1992).

Offenberger, A. A.

R. Fedosejevs, A. A. Offenberger, “Subnanosecond pulses from a KrF Laser pumped SF6 Brillouin amplifier,” IEEE J Quantum Electron. 21, 1558–1562 (1985).
[CrossRef]

Papernyi, S. B.

V. A. Gorbunov, S. B. Papernyi, V. F. Petrov, V. R. Startsev, “Time compression of pulses in the course of stimulated Brillouin scattering in gases,” Sov. J. Quantum Electron. 13, 900–905(1983).
[CrossRef]

S. B. Papernyi, V. F. Petrov, V. R. Startsev, “Observation of a quasisoliton interaction in stimulated Brillouin scattering,” Sov. Tech. Phys. Lett. 7, 185–186 (1981).

Park, Y. K.

Y. K. Park, R. L. Byer, “Electronic linewidth narrowing method for single axial mode operation of Q-switched Nd:YAG lasers,” Optics Commun. 37, 411–416(1981).
[CrossRef]

Petrenko, R. A.

E. Gaizhauskas, V. Krushas, N. Ya. Nedbaev, R. A. Petrenko, A. Piskarskas, V. Smil’gyavichyus, “Generation of picosecond pulses as a result of stimulated Brillouin scattering in liquids,” Sov. J. Quantum Electron. 16, 854–855 (1986).
[CrossRef]

Petrov, V. F.

V. A. Gorbunov, S. B. Papernyi, V. F. Petrov, V. R. Startsev, “Time compression of pulses in the course of stimulated Brillouin scattering in gases,” Sov. J. Quantum Electron. 13, 900–905(1983).
[CrossRef]

S. B. Papernyi, V. F. Petrov, V. R. Startsev, “Observation of a quasisoliton interaction in stimulated Brillouin scattering,” Sov. Tech. Phys. Lett. 7, 185–186 (1981).

Phillion, D. W.

R. L. Kauffman, D. W. Phillion, “X-ray production efficiency at 130 Å from laser-produced plasmas,” in Soft-X-Ray Projection Lithography, J. Bokor, ed., Vol. 12 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 68–71.

Piskarskas, A.

E. Gaizhauskas, V. Krushas, N. Ya. Nedbaev, R. A. Petrenko, A. Piskarskas, V. Smil’gyavichyus, “Generation of picosecond pulses as a result of stimulated Brillouin scattering in liquids,” Sov. J. Quantum Electron. 16, 854–855 (1986).
[CrossRef]

Rao, D. V. G. L. N.

D. N. G. Roy, D. V. G. L. N. Rao, “Optical pulse narrowing by backward, transient stimulated Brillouin scattering,” J. Appl. Phys. 59, 332–335 (1986).
[CrossRef]

Roy, D. N. G.

D. N. G. Roy, D. V. G. L. N. Rao, “Optical pulse narrowing by backward, transient stimulated Brillouin scattering,” J. Appl. Phys. 59, 332–335 (1986).
[CrossRef]

Shipilov, K. F.

M. A. Davydov, K. F. Shipilov, T. A. Shmaonov, “Formation of highly compressed stimulated Brillouin scattering pulses in liquids,” Sov. J. Quantum Electron. 16, 1402–1403 (1986).
[CrossRef]

Shmaonov, T. A.

M. A. Davydov, K. F. Shipilov, T. A. Shmaonov, “Formation of highly compressed stimulated Brillouin scattering pulses in liquids,” Sov. J. Quantum Electron. 16, 1402–1403 (1986).
[CrossRef]

Siegman, A. E.

See for example. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 385–386.

Smil’gyavichyus, V.

E. Gaizhauskas, V. Krushas, N. Ya. Nedbaev, R. A. Petrenko, A. Piskarskas, V. Smil’gyavichyus, “Generation of picosecond pulses as a result of stimulated Brillouin scattering in liquids,” Sov. J. Quantum Electron. 16, 854–855 (1986).
[CrossRef]

Smith, R. C.

D. C. Hanna, B. Luther-Davies, R. C. Smith, “Single longitudinal mode selection of high power actively Q-switch lasers,” Opto-electronics 4, 249–256 (1972).
[CrossRef]

Solarz, R. W.

R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz, M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” J. Quantum Electron. 28, 966–976 (1992).
[CrossRef]

Startsev, V. R.

V. A. Gorbunov, S. B. Papernyi, V. F. Petrov, V. R. Startsev, “Time compression of pulses in the course of stimulated Brillouin scattering in gases,” Sov. J. Quantum Electron. 13, 900–905(1983).
[CrossRef]

S. B. Papernyi, V. F. Petrov, V. R. Startsev, “Observation of a quasisoliton interaction in stimulated Brillouin scattering,” Sov. Tech. Phys. Lett. 7, 185–186 (1981).

Zapata, L.

J. L. Miller, C. B. Dane, L. Zapata, L. Hackel, J. Abate, “Neodymium:glass zigzag slab regenerative amplifier laser system for x-ray lithography,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 90.

IEEE J Quantum Electron.

R. Fedosejevs, A. A. Offenberger, “Subnanosecond pulses from a KrF Laser pumped SF6 Brillouin amplifier,” IEEE J Quantum Electron. 21, 1558–1562 (1985).
[CrossRef]

J. Appl. Phys.

D. N. G. Roy, D. V. G. L. N. Rao, “Optical pulse narrowing by backward, transient stimulated Brillouin scattering,” J. Appl. Phys. 59, 332–335 (1986).
[CrossRef]

J. Quantum Electron.

R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz, M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” J. Quantum Electron. 28, 966–976 (1992).
[CrossRef]

Opt. Lett.

Optics Commun.

Y. K. Park, R. L. Byer, “Electronic linewidth narrowing method for single axial mode operation of Q-switched Nd:YAG lasers,” Optics Commun. 37, 411–416(1981).
[CrossRef]

Opto-electronics

D. C. Hanna, B. Luther-Davies, R. C. Smith, “Single longitudinal mode selection of high power actively Q-switch lasers,” Opto-electronics 4, 249–256 (1972).
[CrossRef]

Sov. J. Quantum Electron.

V. A. Gorbunov, S. B. Papernyi, V. F. Petrov, V. R. Startsev, “Time compression of pulses in the course of stimulated Brillouin scattering in gases,” Sov. J. Quantum Electron. 13, 900–905(1983).
[CrossRef]

M. A. Davydov, K. F. Shipilov, T. A. Shmaonov, “Formation of highly compressed stimulated Brillouin scattering pulses in liquids,” Sov. J. Quantum Electron. 16, 1402–1403 (1986).
[CrossRef]

R. R. Buzyalis, A. S. Dement’ev, E. K. Kosenko, “Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic YAG:Nd laser,” Sov. J. Quantum Electron. 15, 1335–1337 (1985).
[CrossRef]

E. Gaizhauskas, V. Krushas, N. Ya. Nedbaev, R. A. Petrenko, A. Piskarskas, V. Smil’gyavichyus, “Generation of picosecond pulses as a result of stimulated Brillouin scattering in liquids,” Sov. J. Quantum Electron. 16, 854–855 (1986).
[CrossRef]

Sov. Tech. Phys. Lett.

S. B. Papernyi, V. F. Petrov, V. R. Startsev, “Observation of a quasisoliton interaction in stimulated Brillouin scattering,” Sov. Tech. Phys. Lett. 7, 185–186 (1981).

Other

G. Albrecht, R. J. Beach, B. Comaskey, “High-repetition-rate diode-pumped solid state lasers,” in Energy and Technology Review, UCRL-52000-92-6 (Lawrence Livermore National Laboratory, Livermore CA 94550, 1992).

R. L. Kauffman, D. W. Phillion, “X-ray production efficiency at 130 Å from laser-produced plasmas,” in Soft-X-Ray Projection Lithography, J. Bokor, ed., Vol. 12 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 68–71.

J. L. Miller, C. B. Dane, L. Zapata, L. Hackel, J. Abate, “Neodymium:glass zigzag slab regenerative amplifier laser system for x-ray lithography,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 90.

C. B. Dane, W. A. Neuman, L. A. Hackel, “High energy SBS pulse compression,” submitted to J. Quantum Electron. (1992).

See for example. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 385–386.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic layout of a soft-x-ray projection lithography laser system.

Fig. 2
Fig. 2

(a) Modular microchannel-cooled laser diode package that accepts 1.8 linear centimeters of diode array. The approximate package dimensions are 2 cm × 2 cm × 0.075 cm. (b) The diode bar is mounted at the edge of a coated surface, emitting light down and toward the right in this photograph.

Fig. 3
Fig. 3

(a) 2-D laser diode array constructed by stacking 16 modular microchannel packages. (b) This 80-module stack was fabricated for pumping a Nd3+:YAG high-average-power crystalline slab laser.

Fig. 4
Fig. 4

Schematic diagram of a single-frequency master oscillator.

Fig. 5
Fig. 5

Schematic diagram showing the overall dimensions of a zigzag Nd:YAG slab and its pumping and cooling geometry. The beam makes 22 zigzag traverses through the slab. The gain is expected to reach 3 Np (single pass G0 = 20).

Fig. 6
Fig. 6

Effective gain expected when parameterized against the slab wedge angle and the edge refractive index. The top set of curves assumes perfect index matching and the lower set assumes an index of 1.47 at the edges. The curves stop at the point where the codes find parasitic lasing for the wedge angles indicated. The dashed line represents the gain expected if ASE effects are absent.

Fig. 7
Fig. 7

Representative tecate/brew code results for the Nd:YAG slab of our design. The scale factors in (a), (b), and (d) expand the thin dimension for clarity: (a) Temperature distribution in a cross section perpendicular to the slab axis through the slab center. Isotherms are 3 °C apart. (b) Stress contours in longitudinal cross section through the center of the slab. 6-MPa contours go from ~50 MPa tension on the surface to 25 MPa of compression in the midplane next to the pumped–unpumped transition. (c) Deformations magnified 3000 times. (d) Single-pass interferogram for the 22-bounce zigzag path of the extracting beam (one-wave contours).

Fig. 8
Fig. 8

With this oscillator–amplifier configuration and an appropriate choice of the SS medium, pulses in the MJ range could be compressed with high-energy efficiency.

Fig. 9
Fig. 9

Results of using the SBS to compress a 2.5-J pulse from a width of 15.8 to 1.7 ns. The 80% efficiency resulted in a five-time increase in peak power.

Metrics