Abstract

For visible wavelengths and for most of the oceanic waters, the albedo for single scattering ( ω̅) is not high enough to generate within the upper layers of the ocean a completely diffuse regime, so that the upwelling radiances below the surface, as well as the water-leaving radiances, generally do not form an isotropic radiant field. The nonisotropic character and the resulting bidirectional reflectance are conveniently expressed by the Q factor, which relates a given upwelling radiance Lu(θ′, φ) to the upwelling irradiance Eu (θ′ is the nadir angle, φ is the azimuth angle, and Q = Eu/Lu); in addition the Q function is also dependent on the Sun's position. Another factor, denoted f, controls the magnitude of the global reflectance, R (= Eu/Ed, where Ed is the downwelling irradiance below the surface); f relates R to the backscattering and absorption coefficients of the water body (bb and a, respectively), according to R = f(bb/a). This f factor is also Sun angle dependent. By operating an azimuth-dependent Monte Carlo code, both these quantities, as well as their ratio (f/Q) have been studied as a function of the water optical characteristics, namely ω̅ and η; η is the ratio of the molecular scattering to the total (molecular + particles) scattering. Realistic cases (including oceanic waters, with varying chlorophyll concentrations; several wavelengths involved in the remote sensing of ocean color and variable atmospheric turbidity) have been considered. Emphasis has been put on the geometrical conditions that would be typical of a satellite-based ocean color sensor, to derive and interpret the possible variations of the signal emerging from various oceanic waters, when seen from space under various angles and solar illumination conditions.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription